On the H.-Q. Li inequality on step-two Carnot groups
In this note we show that the gradient estimate of the heat semigroup, or more precisely the H.-Q. Li inequality, is preserved under tensorization, some suitable group epimorphism, and central sum. We also establish the Riemannian counterpart of the H.-Q. Li inequality. As a byproduct, we provide a...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-10-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.475/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this note we show that the gradient estimate of the heat semigroup, or more precisely the H.-Q. Li inequality, is preserved under tensorization, some suitable group epimorphism, and central sum. We also establish the Riemannian counterpart of the H.-Q. Li inequality. As a byproduct, we provide a simpler proof of the fact that the constant in H.-Q. Li inequality is strictly larger than $1$. |
---|---|
ISSN: | 1778-3569 |