Focused Ultrasound Sonications of Tumor Model in Head Phantom under MRI Monitoring: Effect of Skull Obstruction on Focal Heating

Purpose: This study presents the outcomes of a series of magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS) sonications performed on an anatomically accurate head phantom with an embedded tumor simulator to evaluate the effectiveness of partial and complete tumor ablation with obstr...

Full description

Saved in:
Bibliographic Details
Main Authors: Anastasia Antoniou, Antreas Chrysanthou, Leonidas Georgiou, Antonis Christofi, Yiannis Roussakis, Cleanthis Ioannides, Kyriakos Spanoudes, Jufeng Zhao, Liyang Yu, Christakis Damianou
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2025-01-01
Series:Journal of Medical Physics
Subjects:
Online Access:https://journals.lww.com/10.4103/jmp.jmp_177_24
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose: This study presents the outcomes of a series of magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS) sonications performed on an anatomically accurate head phantom with an embedded tumor simulator to evaluate the effectiveness of partial and complete tumor ablation with obstruction from thin polymer skull mimics. Materials and Methods: The tumor simulator was subjected to single and grid sonications using a single-element concave transducer integrated with an MRI-compatible focused ultrasound (FUS) robotic system. All experiments were carried out in a high-field MRI scanner utilizing proton resonance frequency thermometry and T2-weighted (T2-W) turbo spin echo (TSE) imaging to evaluate the induced thermal effects. FUS transmission through 1-mm thick three-dimensional-printed polymer skull mimics was compared to unobstructed sonication through a circular aperture in the skull model. Results: T2-W TSE imaging demonstrated sharp contrast between the tumor and hyperintense FUS lesions. Complete tumor coverage was achieved through robotic-assisted grid ablation without a skull mimic, as well as with a 1-mm resin skull mimic intervening in the beam. With the lowest attenuation among tested polymers, the resin skull resulted in approximately a 20% reduction in focal temperature change compared to unobstructed sonication, yet still facilitated sharp beam focusing, raising the tumor temperature to ablative levels. Conclusions: The study provides preliminary evidence for the potential application of a thin biocompatible implant to temporarily replace a skull portion facilitating MRgFUS ablation of inoperable tumors using a single-element transducer. The tumor-embedded head phantom was proven effective for testing MRgFUS oncological protocols and equipment.
ISSN:0971-6203
1998-3913