Fast catalytic pyrolysis of lignin into monocyclic aromatic hydrocarbons over in-situ generated Fe-based catalyst
This study examined the catalytic pyrolysis of kraft lignin using an in-situ generated Fe-based catalyst from iron ore. The fresh and spent catalysts were characterized by a transmission electron microscope to investigate the morphological changes of the catalysts. To evaluate the catalysts′ perform...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | zho |
| Published: |
Editorial Office of Energy Environmental Protection
2024-04-01
|
| Series: | 能源环境保护 |
| Subjects: | |
| Online Access: | https://eep1987.com/en/article/4873 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study examined the catalytic pyrolysis of kraft lignin using an in-situ generated Fe-based catalyst from iron ore. The fresh and spent catalysts were characterized by a transmission electron microscope to investigate the morphological changes of the catalysts. To evaluate the catalysts′ performance, a segmented pyrolysis reactor coupled with time-of-flight mass spectrometry was employed. The results showed that the fresh catalysts had a particle-like morphology, while the spent catalysts appeared sintered. Compared to unreduced iron ore and commercial Fe_2O_3, reduced iron ore significantly promoted the production of monocyclic aromatic hydrocarbons. A yield of monocyclic aromatic hydrocarbons reached 81% at the optimized reaction temperature of 550 ℃, with benzene, toluene, xylene and trimethylbenzene accounting for 46%, 34%, 13% and 7% respectively. Moreover, the possible pathway for kraft lignin via catalytic pyrolysis was proposed based on dehydroxylation and demethoxylation. This work suggests that a low-cost iron ore catalyst could potentially be applied to pyrolyze kraft lignin to produce valuable bio-based aromatic hydrocarbons. |
|---|---|
| ISSN: | 2097-4183 |