Dynamic Stiffness Measurements of Road Pavements by Means of Impact Hammer in a Non-Resonant Configuration

The different sources of noise in a vehicle have long been known, and they include noise from the engine and other mechanical parts, aerodynamic noise, and rolling noise. More specifically, the latter concerns the interaction between the tire and the road surface, and so it is also known as Tire–Roa...

Full description

Saved in:
Bibliographic Details
Main Authors: Matteo Bolognese, Erica Greco, Francesco Bianco, Gaetano Licitra
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/2/651
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The different sources of noise in a vehicle have long been known, and they include noise from the engine and other mechanical parts, aerodynamic noise, and rolling noise. More specifically, the latter concerns the interaction between the tire and the road surface, and so it is also known as Tire–Road Noise (TRN). One of the parameters influencing TRN is pavement stiffness. The empirical measurement of pavement stiffness, and in particular, its frequency spectrum (dynamic stiffness), is not easy to determine, and only in the last decade have studies emerged about this subject. In these works, two different instrumental chains are employed as follows: the impact hammer one and the dynamic exciter (shaker) one, which has established itself over time as a reference. The objective of this work is to develop a system for the dynamic stiffness measurements of road pavements using the impact hammer capable of producing a similar performance to the shaker while minimizing costs. During the work, a measurement aid device named Test Automation Device (TAD) was designed and implemented to increase the quality of the measurements. In line with the practical execution of the measurement, the analysis and the representation of the results were optimized to obtain results that adhere to the stiffness model proposed in the literature. In the present paper, the TAD, the measurement optimization work, the data analysis performed, and the proposed representation method will be described. Finally, we will present the results obtained and possible future perspectives.
ISSN:2076-3417