A Model of Double-Directional Indoor Channels for Multiterminal Communications

We propose a model of double-directional indoor nonline of sight (NLOS) channels for multiterminal communications. We derive a simple channel matrix that describes input-output relationship for such channels. The multiterminal systems may consist of several terminals that act as amplify-and-forward...

Full description

Saved in:
Bibliographic Details
Main Authors: Puji Handayani, Gamantyo Hendrantoro
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2013/384173
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a model of double-directional indoor nonline of sight (NLOS) channels for multiterminal communications. We derive a simple channel matrix that describes input-output relationship for such channels. The multiterminal systems may consist of several terminals that act as amplify-and-forward (AF) relays, where source, relays, and destination have arbitrary numbers of antennas. We complete our model by characterizing the parameters of double-directional channel impulse response of such channels through measurements in indoor environment using 3D synthetic array antenna at 2.5 GHz band. To find out the relation between spatial characteristic of channels in each hop, we observe the direction of arrival (DOA) and direction of departure (DOD) of multipath component signals at the terminal that acts as relay. We find that there are several closely matched azimuths of DOAs and azimuths of DODs which follow uniform distribution in the range of −180° to 180° for elevation around the broadside direction of vertical omnidirectional elements of arrays.
ISSN:1687-5869
1687-5877