Hardware Development and Evaluation of Multihop Cluster-Based Agricultural IoT Based on Bluetooth Low-Energy and LoRa Communication Technologies
In this paper, we present the development and evaluation of a contextually relevant, cost-effective, multihop cluster-based agricultural Internet of Things (MCA-IoT) network. This network utilizes commercial off-the-shelf (COTS) Bluetooth Low-Energy (BLE) and LoRa communication technologies, along w...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-09-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/24/18/6113 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we present the development and evaluation of a contextually relevant, cost-effective, multihop cluster-based agricultural Internet of Things (MCA-IoT) network. This network utilizes commercial off-the-shelf (COTS) Bluetooth Low-Energy (BLE) and LoRa communication technologies, along with the Raspberry Pi 3 Model B+ (RPi 3 B+), to address the challenges of climate change-induced global food insecurity in smart farming applications. Employing the lean engineering design approach, we initially implemented a centralized cluster-based agricultural IoT (CA-IoT) hardware testbed incorporating BLE, RPi 3 B+, STEMMA soil moisture sensors, UM25 m, and LoPy low-power Wi-Fi modules. This system was subsequently adapted and refined to assess the performance of the MCA-IoT network. This study offers a comprehensive reference on the novel, location-independent MCA-IoT technology, including detailed design and deployment insights for the agricultural IoT (Agri-IoT) community. The proposed solution demonstrated favorable performance in indoor and outdoor environments, particularly in water-stressed regions of Northern Ghana. Performance evaluations revealed that the MCA-IoT technology is easy to deploy and manage by users with limited expertise, is location-independent, robust, energy-efficient for battery operation, and scalable in terms of task and size, thereby providing a versatile range of measurements for future applications. Our results further demonstrated that the most effective approach to utilizing existing IoT-based communication technologies within a typical farming context in sub-Saharan Africa is to integrate them. |
|---|---|
| ISSN: | 1424-8220 |