Multi-Dimensional Feature Perception Network for Open-Switch Fault Diagnosis in Grid-Connected PV Inverters

Intelligent monitoring and fault diagnosis of PV grid-connected inverters are crucial for the operation and maintenance of PV power plants. However, due to the significant influence of weather conditions on the operating status of PV inverters, the accuracy of traditional fault diagnosis methods fac...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuxuan Xie, Yaoxi He, Yong Zhan, Qianlin Chang, Keting Hu, Haoyu Wang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/15/4044
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intelligent monitoring and fault diagnosis of PV grid-connected inverters are crucial for the operation and maintenance of PV power plants. However, due to the significant influence of weather conditions on the operating status of PV inverters, the accuracy of traditional fault diagnosis methods faces challenges. To address the issue of open-circuit faults in power switching devices, this paper proposes a multi-dimensional feature perception network. This network captures multi-scale fault features under complex operating conditions through a multi-dimensional dilated convolution feature enhancement module and extracts non-causal relationships under different conditions using convolutional feature fusion with a Transformer. Experimental results show that the proposed network achieves fault diagnosis accuracies of 97.3% and 96.55% on the inverter dataset and the generalization performance dataset, respectively.
ISSN:1996-1073