Challenges and Issues Facing Ultrafast-Charging Lithium-Ion Batteries

Ultrafast-charging (UFC) technology for electric vehicles (EVs) and energy storage devices has brought with it an increase in demand for lithium-ion batteries (LIBs). However, although they pose advantages in driving range and charging time, LIBs face several challenges such as mechanical degradatio...

Full description

Saved in:
Bibliographic Details
Main Authors: Amirreza Aghili Mehrizi, Firoozeh Yeganehdoust, Anil Kumar Madikere Raghunatha Reddy, Karim Zaghib
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Batteries
Subjects:
Online Access:https://www.mdpi.com/2313-0105/11/6/209
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrafast-charging (UFC) technology for electric vehicles (EVs) and energy storage devices has brought with it an increase in demand for lithium-ion batteries (LIBs). However, although they pose advantages in driving range and charging time, LIBs face several challenges such as mechanical degradation, lithium dendrite formation, electrolyte decomposition, and concerns about thermal runaway safety. This review evaluates the key challenges and advances in LIB components (anodes, cathodes, electrolytes, separators, and binders), alongside innovations in charging protocols and safety concerns. Material-level solutions such as nanostructuring, doping, and composite architectures are investigated to improve ion diffusion, conductivity, and electrode stability. Electrolyte modifications, separator enhancements, and binder optimizations are discussed in terms of their roles in reducing high-rate degradation. Furthermore, charging protocols are addressed; adjustments can reduce mechanical and electrochemical stress on LIBs, decreasing capacity fade while providing rapid charging. This review highlights the key technological advancements that are enabling ultrafast charging and that are assisting us in overcoming severe limitations, paving the way for the development of next-generation high-performance LIBs.
ISSN:2313-0105