Non-invasive multimodal dataset for the detection of iron deficiency anemia in young adults: fingertip videos, palm videos, and nail photographs

Iron deficiency anemia affects a significant proportion of the young population in both rural and urban areas of Peru. In response to the need for non-invasive, accessible, and reproducible methods for its detection, we developed this dataset as part of a research project funded by the Universidad...

Full description

Saved in:
Bibliographic Details
Main Authors: Miguel Angel Valles-Coral, Richard Injante, Jorge Raul Navarro-Cabrera, Lloy Pinedo, Luis Gerardo Salazar-Ramirez, María Elena Farro-Roque, Luz Karen Quintanilla-Morales
Format: Article
Language:Spanish
Published: Universidad Nacional de San Martín 2025-07-01
Series:Revista Científica de Sistemas e Informática
Subjects:
Online Access:https://revistas.unsm.edu.pe/index.php/rcsi/article/view/955
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849399948096831488
author Miguel Angel Valles-Coral
Richard Injante
Jorge Raul Navarro-Cabrera
Lloy Pinedo
Luis Gerardo Salazar-Ramirez
María Elena Farro-Roque
Luz Karen Quintanilla-Morales
author_facet Miguel Angel Valles-Coral
Richard Injante
Jorge Raul Navarro-Cabrera
Lloy Pinedo
Luis Gerardo Salazar-Ramirez
María Elena Farro-Roque
Luz Karen Quintanilla-Morales
author_sort Miguel Angel Valles-Coral
collection DOAJ
description Iron deficiency anemia affects a significant proportion of the young population in both rural and urban areas of Peru. In response to the need for non-invasive, accessible, and reproducible methods for its detection, we developed this dataset as part of a research project funded by the Universidad Nacional de San Martín, which applies computer vision techniques to automatically classify patients as anemic or non-anemic. The aim is to provide a standardized base of videos and images that supports the development and validation of classification and regression models to estimate hemoglobin levels without the need for blood extraction. This data paper presents a multimodal dataset composed of non-invasive visual records collected to facilitate the detection of iron deficiency anemia in young adults through machine learning models. The dataset includes 909 fingertip videos, 909 palm videos (with controlled hand opening), and 909 nail photographs, all linked to individual clinical data such as age, sex, hemoglobin level, and symptomatology.
format Article
id doaj-art-e04445c7b8ab4c0aacd03de33269cc03
institution Kabale University
issn 2709-992X
language Spanish
publishDate 2025-07-01
publisher Universidad Nacional de San Martín
record_format Article
series Revista Científica de Sistemas e Informática
spelling doaj-art-e04445c7b8ab4c0aacd03de33269cc032025-08-20T03:38:12ZspaUniversidad Nacional de San MartínRevista Científica de Sistemas e Informática2709-992X2025-07-015210.51252/rcsi.v5i2.955Non-invasive multimodal dataset for the detection of iron deficiency anemia in young adults: fingertip videos, palm videos, and nail photographs Miguel Angel Valles-Coral0https://orcid.org/0000-0002-8806-2892Richard Injante1https://orcid.org/0000-0002-2449-8937Jorge Raul Navarro-Cabrera2https://orcid.org/0000-0002-7369-4459Lloy Pinedo3https://orcid.org/0000-0002-5569-8739Luis Gerardo Salazar-Ramirez4María Elena Farro-Roque5https://orcid.org/0000-0001-5163-786XLuz Karen Quintanilla-Morales6Universidad Nacional de San Martín Universidad Nacional de San Martín Universidad Nacional de San MartínUniversidad Nacional de San MartínUniversidad Nacional de San MartínUniversidad Nacional de San Martín Universidad Nacional de San Martín Iron deficiency anemia affects a significant proportion of the young population in both rural and urban areas of Peru. In response to the need for non-invasive, accessible, and reproducible methods for its detection, we developed this dataset as part of a research project funded by the Universidad Nacional de San Martín, which applies computer vision techniques to automatically classify patients as anemic or non-anemic. The aim is to provide a standardized base of videos and images that supports the development and validation of classification and regression models to estimate hemoglobin levels without the need for blood extraction. This data paper presents a multimodal dataset composed of non-invasive visual records collected to facilitate the detection of iron deficiency anemia in young adults through machine learning models. The dataset includes 909 fingertip videos, 909 palm videos (with controlled hand opening), and 909 nail photographs, all linked to individual clinical data such as age, sex, hemoglobin level, and symptomatology. https://revistas.unsm.edu.pe/index.php/rcsi/article/view/955artificial intelligencebiomedical videosclinical datasetcomputer visionhemoglobinmachine learning
spellingShingle Miguel Angel Valles-Coral
Richard Injante
Jorge Raul Navarro-Cabrera
Lloy Pinedo
Luis Gerardo Salazar-Ramirez
María Elena Farro-Roque
Luz Karen Quintanilla-Morales
Non-invasive multimodal dataset for the detection of iron deficiency anemia in young adults: fingertip videos, palm videos, and nail photographs
Revista Científica de Sistemas e Informática
artificial intelligence
biomedical videos
clinical dataset
computer vision
hemoglobin
machine learning
title Non-invasive multimodal dataset for the detection of iron deficiency anemia in young adults: fingertip videos, palm videos, and nail photographs
title_full Non-invasive multimodal dataset for the detection of iron deficiency anemia in young adults: fingertip videos, palm videos, and nail photographs
title_fullStr Non-invasive multimodal dataset for the detection of iron deficiency anemia in young adults: fingertip videos, palm videos, and nail photographs
title_full_unstemmed Non-invasive multimodal dataset for the detection of iron deficiency anemia in young adults: fingertip videos, palm videos, and nail photographs
title_short Non-invasive multimodal dataset for the detection of iron deficiency anemia in young adults: fingertip videos, palm videos, and nail photographs
title_sort non invasive multimodal dataset for the detection of iron deficiency anemia in young adults fingertip videos palm videos and nail photographs
topic artificial intelligence
biomedical videos
clinical dataset
computer vision
hemoglobin
machine learning
url https://revistas.unsm.edu.pe/index.php/rcsi/article/view/955
work_keys_str_mv AT miguelangelvallescoral noninvasivemultimodaldatasetforthedetectionofirondeficiencyanemiainyoungadultsfingertipvideospalmvideosandnailphotographs
AT richardinjante noninvasivemultimodaldatasetforthedetectionofirondeficiencyanemiainyoungadultsfingertipvideospalmvideosandnailphotographs
AT jorgeraulnavarrocabrera noninvasivemultimodaldatasetforthedetectionofirondeficiencyanemiainyoungadultsfingertipvideospalmvideosandnailphotographs
AT lloypinedo noninvasivemultimodaldatasetforthedetectionofirondeficiencyanemiainyoungadultsfingertipvideospalmvideosandnailphotographs
AT luisgerardosalazarramirez noninvasivemultimodaldatasetforthedetectionofirondeficiencyanemiainyoungadultsfingertipvideospalmvideosandnailphotographs
AT mariaelenafarroroque noninvasivemultimodaldatasetforthedetectionofirondeficiencyanemiainyoungadultsfingertipvideospalmvideosandnailphotographs
AT luzkarenquintanillamorales noninvasivemultimodaldatasetforthedetectionofirondeficiencyanemiainyoungadultsfingertipvideospalmvideosandnailphotographs