Pancreatic MicroRNAs in <i>Ictidomys tridecemlineatus</i> Associated with Metabolic Diseases: Nature’s Insights into Important Biomarkers

Hibernation involves a profound metabolic rate depression (MRD) that enables certain species to survive prolonged periods of low energy availability. The thirteen-lined ground squirrel uses MRD to arrange cellular and biochemical pathways which suppress nonvital genetic and cellular pathways to cons...

Full description

Saved in:
Bibliographic Details
Main Authors: Olawale O. Taiwo, Saif Rehman, Kenneth B. Storey
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/15/5/616
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hibernation involves a profound metabolic rate depression (MRD) that enables certain species to survive prolonged periods of low energy availability. The thirteen-lined ground squirrel uses MRD to arrange cellular and biochemical pathways which suppress nonvital genetic and cellular pathways to conserve internal energy while preserving all essential processes. This study investigates the role of microRNAs (miRNAs) in controlling key signaling pathways and cellular processes in pancreatic tissue during hibernation. Using next-generation sequencing and broad genomic analysis, we analyzed and identified seven differentially expressed miRNAs (miR-29a-3p, miR-22-3p, miR-125-5p, miR-200a-3p, miR-328-3p, miR-21-5p, and miR-148-3p) in the pancreas of hibernating 13-lined ground squirrels (<i>Ictidomys tridecemlineatus</i>). Our findings reveal that these miRNAs regulate pathways involved in glucose homeostasis, including insulin secretion and metabolic regulation, contributing to the unique adaptations of hibernation. These insights advance our understanding of the molecular adaptations underlying hibernation and may have implications for therapeutic strategies targeting metabolic disorders such as diabetes.
ISSN:2218-273X