The Lung Microbiome and Its Impact on Obstructive Sleep Apnea: A Diagnostic Frontier

Obstructive sleep apnea (OSA), a prevalent disorder characterized by recurrent upper airway collapse, is increasingly recognized as a systemic inflammatory condition influenced by microbial dysregulation. Emerging evidence underscores the lung microbiome as a mediator in OSA pathophysiology, where d...

Full description

Saved in:
Bibliographic Details
Main Authors: Aliki Karkala, Serafeim-Chrysovalantis Kotoulas, Asterios Tzinas, Eleni Massa, Eleni Mouloudi, Foteini Gkakou, Athanasia Pataka
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/15/11/1431
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Obstructive sleep apnea (OSA), a prevalent disorder characterized by recurrent upper airway collapse, is increasingly recognized as a systemic inflammatory condition influenced by microbial dysregulation. Emerging evidence underscores the lung microbiome as a mediator in OSA pathophysiology, where dysbiotic shifts driven by intermittent hypoxia, oxidative stress and mechanical airway trauma amplify inflammatory cascades and perpetuate respiratory instability. This review synthesizes current knowledge on the bidirectional interplay between OSA and lung microbial communities. It aims to highlight how hypoxia-induced alterations in microbial ecology disrupt immune homeostasis, while inflammation-driven mucosal injury fosters pathogenic colonization. Clinical correlations between specific taxa like <i>Streptococcus</i> and <i>Prevotella</i>, and disease severity, suggest microbial signatures as novel biomarkers for OSA progression and treatment response. Furthermore, oxidative stress markers and pro-inflammatory cytokines emerge as potential diagnostic tools that bridge microbial dysbiosis with sleep-related outcomes. However, challenges persist in sampling standardization of the low-biomass lower airways, as well as in causative mechanisms linking microbial dysbiosis to OSA pathophysiology. By integrating microbial ecology with precision sleep medicine, this paradigm shift promises to transform OSA management from mechanical stabilization to holistic ecosystem restoration.
ISSN:2075-4418