Coordination Chemistry of Solvated Metal Ions in Soft Donor Solvents

The structures of hexaammine solvated indium(III) and thallium(III) ions in liquid ammonia solution are determined by EXAFS. Both complexes have regular octahedral coordination geometry with mean In-N and Tl-N bond distances of 2.23(1) and 2.29(2) Å, respectively. Ammine solvated thallium(III) in li...

Full description

Saved in:
Bibliographic Details
Main Authors: Kersti B. Nilsson, Mikhail Maliarik, Ingmar Persson
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/30/15/3063
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The structures of hexaammine solvated indium(III) and thallium(III) ions in liquid ammonia solution are determined by EXAFS. Both complexes have regular octahedral coordination geometry with mean In-N and Tl-N bond distances of 2.23(1) and 2.29(2) Å, respectively. Ammine solvated thallium(III) in liquid ammonia is characterized with <sup>205</sup>Tl NMR measurements. Solvents such as liquid ammonia, N,N-dimethylthioformamide (DMTF), trialkyl and triphenyl phosphite and phosphine are strong electron pair donors and thereby able to form bonds with a large covalent contribution with strong electron pair acceptors. A survey of reported structures of ammine, DMTF, trialkyl and triphenyl phosphite and phosphine solvated metal ions in the solid state and solution is presented. The M-N and M-S bond distances in ammine and DMTF solvated metal ions are compared with the M-O bond distance in the corresponding metal ion hydrates, expected to form mainly electrostatic interactions with metal ions. The d<sup>10</sup> metal ions have high ability to form bonds with a high degree of covalency with increasing ability down the group and with decreasing charge of the metal ion. The difference in M-N and M-O bond distances between ammine solvated and hydrated metal ions with the same coordination geometry decreases significantly with the increasing ability of the metal ion to form bonds with a large covalent contribution. This difference correlates well with the covalent bonding index, <i>γ</i><sub>M</sub><sup>2</sup>*<i>r.</i>
ISSN:1420-3049