A New Subject-Sensitive Hashing Algorithm Based on Multi-PatchDrop and Swin-Unet for the Integrity Authentication of HRRS Image
Transformer-based subject-sensitive hashing algorithms exhibit good integrity authentication performance and have the potential to ensure the authenticity and convenience of high-resolution remote sensing (HRRS) images. However, the robustness of Transformer-based subject-sensitive hashing is still...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-09-01
|
| Series: | ISPRS International Journal of Geo-Information |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2220-9964/13/9/336 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Transformer-based subject-sensitive hashing algorithms exhibit good integrity authentication performance and have the potential to ensure the authenticity and convenience of high-resolution remote sensing (HRRS) images. However, the robustness of Transformer-based subject-sensitive hashing is still not ideal. In this paper, we propose a Multi-PatchDrop mechanism to improve the performance of Transformer-based subject-sensitive hashing. The Multi-PatchDrop mechanism determines different patch dropout values for different Transformer blocks in ViT models. On the basis of a Multi-PatchDrop, we propose an improved Swin-Unet for implementing subject-sensitive hashing. In this improved Swin-Unet, Multi-PatchDrop has been integrated, and each Swin Transformer block (except the first one) is preceded by a patch dropout layer. Experimental results demonstrate that the robustness of our proposed subject-sensitive hashing algorithm is not only stronger than that of the CNN-based algorithms but also stronger than that of Transformer-based algorithms. The tampering sensitivity is of the same intensity as the AGIM-net and M-net-based algorithms, stronger than other Transformer-based algorithms. |
|---|---|
| ISSN: | 2220-9964 |