Scalable Nuclei Detection in HER2-SISH Whole Slide Images via Fine-Tuned Stardist with Expert-Annotated Regions of Interest

<b>Background:</b> Breast cancer remains a critical health concern worldwide, with histopathological analysis of tissue biopsies serving as the clinical gold standard for diagnosis. Manual evaluation of histopathology images is time-intensive and requires specialized expertise, often res...

Full description

Saved in:
Bibliographic Details
Main Authors: Zaka Ur Rehman, Mohammad Faizal Ahmad Fauzi, Wan Siti Halimatul Munirah Wan Ahmad, Fazly Salleh Abas, Phaik-Leng Cheah, Seow-Fan Chiew, Lai-Meng Looi
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/15/13/1584
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<b>Background:</b> Breast cancer remains a critical health concern worldwide, with histopathological analysis of tissue biopsies serving as the clinical gold standard for diagnosis. Manual evaluation of histopathology images is time-intensive and requires specialized expertise, often resulting in variability in diagnostic outcomes. In silver in situ hybridization (SISH) images, accurate nuclei detection is essential for precise histo-scoring of HER2 gene expression, directly impacting treatment decisions. <b>Methods:</b> This study presents a scalable and automated deep learning framework for nuclei detection in HER2-SISH whole slide images (WSIs), utilizing a novel dataset of 100 expert-marked regions extracted from 20 WSIs collected at the University of Malaya Medical Center (UMMC). The proposed two-stage approach combines a pretrained Stardist model with image processing-based annotations, followed by fine tuning on our domain-specific dataset to improve generalization. <b>Results:</b> The fine-tuned model achieved substantial improvements over both the pretrained Stardist model and a conventional watershed segmentation baseline. Quantitatively, the proposed method attained an average F1-score of 98.1% for visual assessments and 97.4% for expert-marked nuclei, outperforming baseline methods across all metrics. Additionally, training and validation performance curves demonstrate stable model convergence over 100 epochs. <b>Conclusions:</b> These results highlight the robustness of our approach in handling the complex morphological characteristics of SISH-stained nuclei. Our framework supports pathologists by offering reliable, automated nuclei detection in HER2 scoring workflows, contributing to diagnostic consistency and efficiency in clinical pathology.
ISSN:2075-4418