Comprehensive Design, Modeling and Analysis of Grid-Forming Type IV Wind Turbine Generators Using State-Space Methods
Grid-forming (GFM) control has emerged as a promising solution to the challenges posed by the increasing reliance on inverter-based resources (IBRs). However, unlike in a battery-based IBR, the implementation of GFM in wind turbine generators (WTGs) introduces challenges due to multiple machine-side...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IEEE
2025-01-01
|
| Series: | IEEE Access |
| Subjects: | |
| Online Access: | https://ieeexplore.ieee.org/document/11010863/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Grid-forming (GFM) control has emerged as a promising solution to the challenges posed by the increasing reliance on inverter-based resources (IBRs). However, unlike in a battery-based IBR, the implementation of GFM in wind turbine generators (WTGs) introduces challenges due to multiple machine-side converter (MSC) and grid-side converter (GSC) interactions. In this work, a GFM-WTG control structure is adopted in which the MSC primarily regulates the DC-link voltage, while the GSC emulates grid-forming behavior using virtual synchronous generator principles. Accordingly, this paper presents a practical control implementation scheme and a systematic small-signal modeling framework for GFM WTGs using the component connection method, enabling a unified state-space representation that captures key electromechanical, aerodynamic and control interactions inside the GFM-WTG system. The proposed model is validated through electromagnetic transient simulations, and eigenvalue and participation factor analyses reveal strong MSC-GSC inter-dependencies. Sensitivity analysis further confirms model accuracy across varying operating conditions. Additionally, a reduced-order model is derived to balance computational efficiency with dynamic fidelity. The findings provide a robust foundation for stability analysis and control tuning of GFM WTGs, supporting their reliable integration into future power grids. |
|---|---|
| ISSN: | 2169-3536 |