Intracellular polarization of RNAs and proteins in the human small intestinal epithelium.

The intestinal epithelium is a polarized monolayer of cells, with an apical side facing the lumen and a basal side facing the blood stream. In mice, both proteins and mRNAs have been shown to exhibit global basal-apical polarization; however, polarization in the human intestine has not been systemat...

Full description

Saved in:
Bibliographic Details
Main Authors: Roy Novoselsky, Yotam Harnik, Oran Yakubovsky, Corine Katina, Yishai Levin, Keren Bahar Halpern, Niv Pencovich, Ido Nachmany, Shalev Itzkovitz
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-12-01
Series:PLoS Biology
Online Access:https://doi.org/10.1371/journal.pbio.3002942
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The intestinal epithelium is a polarized monolayer of cells, with an apical side facing the lumen and a basal side facing the blood stream. In mice, both proteins and mRNAs have been shown to exhibit global basal-apical polarization; however, polarization in the human intestine has not been systematically explored. Here, we employed laser-capture microdissection to isolate apical and basal epithelial segments from intestinal tissues of 8 individuals and performed RNA sequencing and mass-spectrometry proteomics. We find a substantial polarization of mRNA molecules that largely overlaps polarization patterns observed in mice. This mRNA polarization remains consistent across different zones of the intestinal villi and is generally correlated with the polarization of proteins. Our protein analysis exposes streamlined intracellular nutrient transport and processing and reveals that mitochondria and ribosomes are less polarized in humans compared to mice. Our study provides a resource for understanding human intestinal epithelial biology.
ISSN:1544-9173
1545-7885