Genome-wide identification, characterization and expression pattern analysis of the VDAC gene family reveals likely roles in rapid shoot growth and abiotic stress in Moso bamboo ((Phyllostachys edulis (Carrière) J.Houz.)
Moso bamboo is an important fast-growing forest species. The rapid growth of its shoots and its ability to respond to environmental stresses, such as drought and low temperatures, directly influence its shoot yield and quality. The voltage-dependent anion channel (VDAC) family comprises a group of r...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-05-01
|
| Series: | Advances in Bamboo Science |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2773139125000333 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849470193877647360 |
|---|---|
| author | Zhen Yu Sijia Cai Xueyun Xuan Shiying Su Jiaqi Tan Zhijun Zhang |
| author_facet | Zhen Yu Sijia Cai Xueyun Xuan Shiying Su Jiaqi Tan Zhijun Zhang |
| author_sort | Zhen Yu |
| collection | DOAJ |
| description | Moso bamboo is an important fast-growing forest species. The rapid growth of its shoots and its ability to respond to environmental stresses, such as drought and low temperatures, directly influence its shoot yield and quality. The voltage-dependent anion channel (VDAC) family comprises a group of regulatory proteins involved in mitochondrial energy metabolism, which are essential for plant growth, development and stress responses. In this study, we identified a total of 18 VDAC gene family members from the Moso bamboo genome-wide data using bioinformatics methods and systematically analyzed their physicochemical properties, collinearity, chromosomal localization, conserved structural domains and motifs, cis-acting elements and evolutionary relationships. By mining transcriptome data, we characterized the expression patterns of the VDAC gene family during the rapid developmental stages of Moso bamboo shoots, as well as under different hormonal and abiotic stresses, including high salt and drought. The results suggest that the VDAC gene family may promote the rapid development of bamboo shoots and enhance plant responsiveness to hormonal and abiotic stresses. Additionally, we predicted the transcription factors that regulate VDAC-related transcripts, performed protein interaction analysis and initially constructed a VDAC-related regulatory and interaction network. This study provides a theoretical basis for exploring the functions of VDACs in bamboo plants and screening candidate genes related to rapid growth and stress tolerance. |
| format | Article |
| id | doaj-art-dec10d58c4d9443ab4897e28f9b52b4b |
| institution | Kabale University |
| issn | 2773-1391 |
| language | English |
| publishDate | 2025-05-01 |
| publisher | Elsevier |
| record_format | Article |
| series | Advances in Bamboo Science |
| spelling | doaj-art-dec10d58c4d9443ab4897e28f9b52b4b2025-08-20T03:25:12ZengElsevierAdvances in Bamboo Science2773-13912025-05-011110015410.1016/j.bamboo.2025.100154Genome-wide identification, characterization and expression pattern analysis of the VDAC gene family reveals likely roles in rapid shoot growth and abiotic stress in Moso bamboo ((Phyllostachys edulis (Carrière) J.Houz.)Zhen Yu0Sijia Cai1Xueyun Xuan2Shiying Su3Jiaqi Tan4Zhijun Zhang5National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, ChinaNational Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, ChinaNational Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, ChinaNational Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, ChinaNational Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, ChinaNational Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China; Corresponding author: National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China.Moso bamboo is an important fast-growing forest species. The rapid growth of its shoots and its ability to respond to environmental stresses, such as drought and low temperatures, directly influence its shoot yield and quality. The voltage-dependent anion channel (VDAC) family comprises a group of regulatory proteins involved in mitochondrial energy metabolism, which are essential for plant growth, development and stress responses. In this study, we identified a total of 18 VDAC gene family members from the Moso bamboo genome-wide data using bioinformatics methods and systematically analyzed their physicochemical properties, collinearity, chromosomal localization, conserved structural domains and motifs, cis-acting elements and evolutionary relationships. By mining transcriptome data, we characterized the expression patterns of the VDAC gene family during the rapid developmental stages of Moso bamboo shoots, as well as under different hormonal and abiotic stresses, including high salt and drought. The results suggest that the VDAC gene family may promote the rapid development of bamboo shoots and enhance plant responsiveness to hormonal and abiotic stresses. Additionally, we predicted the transcription factors that regulate VDAC-related transcripts, performed protein interaction analysis and initially constructed a VDAC-related regulatory and interaction network. This study provides a theoretical basis for exploring the functions of VDACs in bamboo plants and screening candidate genes related to rapid growth and stress tolerance.http://www.sciencedirect.com/science/article/pii/S2773139125000333Moso bambooGenome-wideVDACExpression patternRapid growthAbiotic stress |
| spellingShingle | Zhen Yu Sijia Cai Xueyun Xuan Shiying Su Jiaqi Tan Zhijun Zhang Genome-wide identification, characterization and expression pattern analysis of the VDAC gene family reveals likely roles in rapid shoot growth and abiotic stress in Moso bamboo ((Phyllostachys edulis (Carrière) J.Houz.) Advances in Bamboo Science Moso bamboo Genome-wide VDAC Expression pattern Rapid growth Abiotic stress |
| title | Genome-wide identification, characterization and expression pattern analysis of the VDAC gene family reveals likely roles in rapid shoot growth and abiotic stress in Moso bamboo ((Phyllostachys edulis (Carrière) J.Houz.) |
| title_full | Genome-wide identification, characterization and expression pattern analysis of the VDAC gene family reveals likely roles in rapid shoot growth and abiotic stress in Moso bamboo ((Phyllostachys edulis (Carrière) J.Houz.) |
| title_fullStr | Genome-wide identification, characterization and expression pattern analysis of the VDAC gene family reveals likely roles in rapid shoot growth and abiotic stress in Moso bamboo ((Phyllostachys edulis (Carrière) J.Houz.) |
| title_full_unstemmed | Genome-wide identification, characterization and expression pattern analysis of the VDAC gene family reveals likely roles in rapid shoot growth and abiotic stress in Moso bamboo ((Phyllostachys edulis (Carrière) J.Houz.) |
| title_short | Genome-wide identification, characterization and expression pattern analysis of the VDAC gene family reveals likely roles in rapid shoot growth and abiotic stress in Moso bamboo ((Phyllostachys edulis (Carrière) J.Houz.) |
| title_sort | genome wide identification characterization and expression pattern analysis of the vdac gene family reveals likely roles in rapid shoot growth and abiotic stress in moso bamboo phyllostachys edulis carriere j houz |
| topic | Moso bamboo Genome-wide VDAC Expression pattern Rapid growth Abiotic stress |
| url | http://www.sciencedirect.com/science/article/pii/S2773139125000333 |
| work_keys_str_mv | AT zhenyu genomewideidentificationcharacterizationandexpressionpatternanalysisofthevdacgenefamilyrevealslikelyrolesinrapidshootgrowthandabioticstressinmosobamboophyllostachyseduliscarrierejhouz AT sijiacai genomewideidentificationcharacterizationandexpressionpatternanalysisofthevdacgenefamilyrevealslikelyrolesinrapidshootgrowthandabioticstressinmosobamboophyllostachyseduliscarrierejhouz AT xueyunxuan genomewideidentificationcharacterizationandexpressionpatternanalysisofthevdacgenefamilyrevealslikelyrolesinrapidshootgrowthandabioticstressinmosobamboophyllostachyseduliscarrierejhouz AT shiyingsu genomewideidentificationcharacterizationandexpressionpatternanalysisofthevdacgenefamilyrevealslikelyrolesinrapidshootgrowthandabioticstressinmosobamboophyllostachyseduliscarrierejhouz AT jiaqitan genomewideidentificationcharacterizationandexpressionpatternanalysisofthevdacgenefamilyrevealslikelyrolesinrapidshootgrowthandabioticstressinmosobamboophyllostachyseduliscarrierejhouz AT zhijunzhang genomewideidentificationcharacterizationandexpressionpatternanalysisofthevdacgenefamilyrevealslikelyrolesinrapidshootgrowthandabioticstressinmosobamboophyllostachyseduliscarrierejhouz |