Zero-viscosity-capillarity limit for the contact discontinuity for the 1-D full compressible Navier-Stokes-Korteweg equations

In this article, we study the zero-viscosity-capillarity limit problem for the one-dimensional full compressible Navier-Stokes-Korteweg equations. This equation models compressible viscous fluids with internal capillarity and heat conductivity. We prove that if the solution of the inviscid Euler eq...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiaxue Chen, Yeping Li, Rong Yin
Format: Article
Language:English
Published: Texas State University 2025-07-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2025/74/abstr.html
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849341236863827968
author Jiaxue Chen
Yeping Li
Rong Yin
author_facet Jiaxue Chen
Yeping Li
Rong Yin
author_sort Jiaxue Chen
collection DOAJ
description In this article, we study the zero-viscosity-capillarity limit problem for the one-dimensional full compressible Navier-Stokes-Korteweg equations. This equation models compressible viscous fluids with internal capillarity and heat conductivity. We prove that if the solution of the inviscid Euler equations is piecewise constants with a contact discontinuity, then there exist smooth solutions to the one-dimensional full compressible Navier-Stokes-Korteweg system which converge to the inviscid solution away from the contact discontinuity. It converges a rate of $\epsilon^{1/4}$ as the the viscosity $\mu=\epsilon$, heat-conductivity coefficient $\alpha=\nu\epsilon$ and the capillarity $\kappa=\lambda\epsilon^2$ and $\epsilon$ tends to zero. The proof is completed using the energy method and the scaling technique.
format Article
id doaj-art-debaa694289643a8a9c4f53c64eb24b2
institution Kabale University
issn 1072-6691
language English
publishDate 2025-07-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj-art-debaa694289643a8a9c4f53c64eb24b22025-08-20T03:43:40ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912025-07-01202574,118Zero-viscosity-capillarity limit for the contact discontinuity for the 1-D full compressible Navier-Stokes-Korteweg equationsJiaxue Chen0Yeping Li1Rong Yin2 Nantong Univ., Nantong, China Nantong Univ., Nantong, China Nantong Univ., Nantong, China In this article, we study the zero-viscosity-capillarity limit problem for the one-dimensional full compressible Navier-Stokes-Korteweg equations. This equation models compressible viscous fluids with internal capillarity and heat conductivity. We prove that if the solution of the inviscid Euler equations is piecewise constants with a contact discontinuity, then there exist smooth solutions to the one-dimensional full compressible Navier-Stokes-Korteweg system which converge to the inviscid solution away from the contact discontinuity. It converges a rate of $\epsilon^{1/4}$ as the the viscosity $\mu=\epsilon$, heat-conductivity coefficient $\alpha=\nu\epsilon$ and the capillarity $\kappa=\lambda\epsilon^2$ and $\epsilon$ tends to zero. The proof is completed using the energy method and the scaling technique.http://ejde.math.txstate.edu/Volumes/2025/74/abstr.htmlfull compressible navier-stokes-korteweg equationcompressible euler systemzero-viscosity-capillarity limitcontact discontinuity
spellingShingle Jiaxue Chen
Yeping Li
Rong Yin
Zero-viscosity-capillarity limit for the contact discontinuity for the 1-D full compressible Navier-Stokes-Korteweg equations
Electronic Journal of Differential Equations
full compressible navier-stokes-korteweg equation
compressible euler system
zero-viscosity-capillarity limit
contact discontinuity
title Zero-viscosity-capillarity limit for the contact discontinuity for the 1-D full compressible Navier-Stokes-Korteweg equations
title_full Zero-viscosity-capillarity limit for the contact discontinuity for the 1-D full compressible Navier-Stokes-Korteweg equations
title_fullStr Zero-viscosity-capillarity limit for the contact discontinuity for the 1-D full compressible Navier-Stokes-Korteweg equations
title_full_unstemmed Zero-viscosity-capillarity limit for the contact discontinuity for the 1-D full compressible Navier-Stokes-Korteweg equations
title_short Zero-viscosity-capillarity limit for the contact discontinuity for the 1-D full compressible Navier-Stokes-Korteweg equations
title_sort zero viscosity capillarity limit for the contact discontinuity for the 1 d full compressible navier stokes korteweg equations
topic full compressible navier-stokes-korteweg equation
compressible euler system
zero-viscosity-capillarity limit
contact discontinuity
url http://ejde.math.txstate.edu/Volumes/2025/74/abstr.html
work_keys_str_mv AT jiaxuechen zeroviscositycapillaritylimitforthecontactdiscontinuityforthe1dfullcompressiblenavierstokeskortewegequations
AT yepingli zeroviscositycapillaritylimitforthecontactdiscontinuityforthe1dfullcompressiblenavierstokeskortewegequations
AT rongyin zeroviscositycapillaritylimitforthecontactdiscontinuityforthe1dfullcompressiblenavierstokeskortewegequations