Slice holomorphic functions in the unit ball: boundedness of $L$-index in a direction and related properties

Let $\mathbf{b}\in\mathbb{C}^n\setminus\{\mathbf{0}\}$ be a fixed direction. We consider slice holomorphic functions of several complex variables in the unit ball, i.e. we study functions which are analytic in intersection of every slice $\{z^0+t\mathbf{b}: t\in\mathbb{C}\}$ with the unit ball $\m...

Full description

Saved in:
Bibliographic Details
Main Authors: A. I. Bandura, T. M. Salo, O. B. Skaskiv
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2022-03-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/311
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849428459362713600
author A. I. Bandura
T. M. Salo
O. B. Skaskiv
author_facet A. I. Bandura
T. M. Salo
O. B. Skaskiv
author_sort A. I. Bandura
collection DOAJ
description Let $\mathbf{b}\in\mathbb{C}^n\setminus\{\mathbf{0}\}$ be a fixed direction. We consider slice holomorphic functions of several complex variables in the unit ball, i.e. we study functions which are analytic in intersection of every slice $\{z^0+t\mathbf{b}: t\in\mathbb{C}\}$ with the unit ball $\mathbb{B}^n=\{z\in\mathbb{C}^: \ |z|:=\sqrt{|z|_1^2+\ldots+|z_n|^2}<1\}$ for any $z^0\in\mathbb{B}^n$. For this class of functions we consider the concept of boundedness of $L$-index in the direction $\mathbf{b},$ where $\mathbf{L}: \mathbb{B}^n\to\mathbb{R}_+$ is a positive continuous function such that $L(z)>\frac{\beta|\mathbf{b}|}{1-|z|}$ and $\beta>1$ is some constant. For functions from this class we deduce analog of Hayman's Theorem. It is criterion useful in applications to differential equations. We introduce a concept of function having bounded value $L$-distribution in direction for the slice holomorphic functions in the unit ball. It is proved that slice holomorphic function in the unit ball has bounded value $L$-distribution in a direction if and only if its directional derivative has bounded $L$-index in the same direction. Other propositions concern existence theorems. We show that for any slice holomorphic function $F$ with bounded multiplicities of zeros on any slice in the fixed direction there exists such a positive continuous function $L$ that the function $F$ has bounded $L$-index in the direction.
format Article
id doaj-art-dea15d44db984903a4459aaa7d42f44b
institution Kabale University
issn 1027-4634
2411-0620
language deu
publishDate 2022-03-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-dea15d44db984903a4459aaa7d42f44b2025-08-20T03:28:41ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342411-06202022-03-01571687810.30970/ms.57.1.68-78311Slice holomorphic functions in the unit ball: boundedness of $L$-index in a direction and related propertiesA. I. Bandura0T. M. Salo1O. B. Skaskiv2Ivano-Frankivsk National Technical University of Oil and GasLviv Politechnic National UniversityIvan Franko National University of Lviv, Lviv, UkraineLet $\mathbf{b}\in\mathbb{C}^n\setminus\{\mathbf{0}\}$ be a fixed direction. We consider slice holomorphic functions of several complex variables in the unit ball, i.e. we study functions which are analytic in intersection of every slice $\{z^0+t\mathbf{b}: t\in\mathbb{C}\}$ with the unit ball $\mathbb{B}^n=\{z\in\mathbb{C}^: \ |z|:=\sqrt{|z|_1^2+\ldots+|z_n|^2}<1\}$ for any $z^0\in\mathbb{B}^n$. For this class of functions we consider the concept of boundedness of $L$-index in the direction $\mathbf{b},$ where $\mathbf{L}: \mathbb{B}^n\to\mathbb{R}_+$ is a positive continuous function such that $L(z)>\frac{\beta|\mathbf{b}|}{1-|z|}$ and $\beta>1$ is some constant. For functions from this class we deduce analog of Hayman's Theorem. It is criterion useful in applications to differential equations. We introduce a concept of function having bounded value $L$-distribution in direction for the slice holomorphic functions in the unit ball. It is proved that slice holomorphic function in the unit ball has bounded value $L$-distribution in a direction if and only if its directional derivative has bounded $L$-index in the same direction. Other propositions concern existence theorems. We show that for any slice holomorphic function $F$ with bounded multiplicities of zeros on any slice in the fixed direction there exists such a positive continuous function $L$ that the function $F$ has bounded $L$-index in the direction.http://matstud.org.ua/ojs/index.php/matstud/article/view/311bounded index; bounded l-index in direction; slice function; holomorphic function; maximum modulus; minimum modulus; bounded l-index; existence theorem; distribution of zeros; unit ball.
spellingShingle A. I. Bandura
T. M. Salo
O. B. Skaskiv
Slice holomorphic functions in the unit ball: boundedness of $L$-index in a direction and related properties
Математичні Студії
bounded index; bounded l-index in direction; slice function; holomorphic function; maximum modulus; minimum modulus; bounded l-index; existence theorem; distribution of zeros; unit ball.
title Slice holomorphic functions in the unit ball: boundedness of $L$-index in a direction and related properties
title_full Slice holomorphic functions in the unit ball: boundedness of $L$-index in a direction and related properties
title_fullStr Slice holomorphic functions in the unit ball: boundedness of $L$-index in a direction and related properties
title_full_unstemmed Slice holomorphic functions in the unit ball: boundedness of $L$-index in a direction and related properties
title_short Slice holomorphic functions in the unit ball: boundedness of $L$-index in a direction and related properties
title_sort slice holomorphic functions in the unit ball boundedness of l index in a direction and related properties
topic bounded index; bounded l-index in direction; slice function; holomorphic function; maximum modulus; minimum modulus; bounded l-index; existence theorem; distribution of zeros; unit ball.
url http://matstud.org.ua/ojs/index.php/matstud/article/view/311
work_keys_str_mv AT aibandura sliceholomorphicfunctionsintheunitballboundednessoflindexinadirectionandrelatedproperties
AT tmsalo sliceholomorphicfunctionsintheunitballboundednessoflindexinadirectionandrelatedproperties
AT obskaskiv sliceholomorphicfunctionsintheunitballboundednessoflindexinadirectionandrelatedproperties