On the Extended Adjacency Eigenvalues of a Graph

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula> be a graph of order <i>n</i> with <i>m&...

Full description

Saved in:
Bibliographic Details
Main Authors: Alaa Altassan, Hilal A. Ganie, Yilun Shang
Format: Article
Language:English
Published: MDPI AG 2024-09-01
Series:Information
Subjects:
Online Access:https://www.mdpi.com/2078-2489/15/10/586
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850205501203152896
author Alaa Altassan
Hilal A. Ganie
Yilun Shang
author_facet Alaa Altassan
Hilal A. Ganie
Yilun Shang
author_sort Alaa Altassan
collection DOAJ
description Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula> be a graph of order <i>n</i> with <i>m</i> edges. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>i</mi></msub><mo>=</mo><mi>d</mi><mrow><mo>(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> be the degree of the vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula>. The extended adjacency matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mrow><mi>e</mi><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi mathvariant="script">H</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula> is an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> matrix defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mrow><mi>e</mi><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi mathvariant="script">H</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><msub><mi>b</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>b</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><mfenced separators="" open="(" close=")"><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi>d</mi><mi>i</mi></msub><msub><mi>d</mi><mi>j</mi></msub></mfrac></mstyle><mo>+</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi>d</mi><mi>j</mi></msub><msub><mi>d</mi><mi>i</mi></msub></mfrac></mstyle></mfenced></mrow></semantics></math></inline-formula>, whenever <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>j</mi></msub></semantics></math></inline-formula> are adjacent and equal to zero otherwise. The largest eigenvalue of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mrow><mi>e</mi><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi mathvariant="script">H</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is called the extended adjacency spectral radius of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula> and the sum of the absolute values of its eigenvalues is called the extended adjacency energy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>. In this paper, we obtain some sharp upper and lower bounds for the extended adjacency spectral radius in terms of different graph parameters and characterize the extremal graphs attaining these bounds. We also obtain some new bounds for the extended adjacency energy of a graph and characterize the extremal graphs attaining these bounds. In both cases, we show our bounds are better than some already known bounds in the literature.
format Article
id doaj-art-de3449aaa2ec4176af18c3777568206f
institution OA Journals
issn 2078-2489
language English
publishDate 2024-09-01
publisher MDPI AG
record_format Article
series Information
spelling doaj-art-de3449aaa2ec4176af18c3777568206f2025-08-20T02:11:04ZengMDPI AGInformation2078-24892024-09-01151058610.3390/info15100586On the Extended Adjacency Eigenvalues of a GraphAlaa Altassan0Hilal A. Ganie1Yilun Shang2Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi ArabiaDepartment of Mathematics, University of Kashmir, Srinagar 190001, IndiaDepartment of Computer and Information Sciences, Northumbria University, Newcastle NE1 8ST, UKLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula> be a graph of order <i>n</i> with <i>m</i> edges. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>i</mi></msub><mo>=</mo><mi>d</mi><mrow><mo>(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> be the degree of the vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula>. The extended adjacency matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mrow><mi>e</mi><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi mathvariant="script">H</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula> is an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> matrix defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mrow><mi>e</mi><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi mathvariant="script">H</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><msub><mi>b</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>b</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle><mfenced separators="" open="(" close=")"><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi>d</mi><mi>i</mi></msub><msub><mi>d</mi><mi>j</mi></msub></mfrac></mstyle><mo>+</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi>d</mi><mi>j</mi></msub><msub><mi>d</mi><mi>i</mi></msub></mfrac></mstyle></mfenced></mrow></semantics></math></inline-formula>, whenever <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>j</mi></msub></semantics></math></inline-formula> are adjacent and equal to zero otherwise. The largest eigenvalue of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>A</mi><mrow><mi>e</mi><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi mathvariant="script">H</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is called the extended adjacency spectral radius of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula> and the sum of the absolute values of its eigenvalues is called the extended adjacency energy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">H</mi></semantics></math></inline-formula>. In this paper, we obtain some sharp upper and lower bounds for the extended adjacency spectral radius in terms of different graph parameters and characterize the extremal graphs attaining these bounds. We also obtain some new bounds for the extended adjacency energy of a graph and characterize the extremal graphs attaining these bounds. In both cases, we show our bounds are better than some already known bounds in the literature.https://www.mdpi.com/2078-2489/15/10/586graphseigenvaluesspectral radiusextended adjacency eigenvaluesextended adjacency energy
spellingShingle Alaa Altassan
Hilal A. Ganie
Yilun Shang
On the Extended Adjacency Eigenvalues of a Graph
Information
graphs
eigenvalues
spectral radius
extended adjacency eigenvalues
extended adjacency energy
title On the Extended Adjacency Eigenvalues of a Graph
title_full On the Extended Adjacency Eigenvalues of a Graph
title_fullStr On the Extended Adjacency Eigenvalues of a Graph
title_full_unstemmed On the Extended Adjacency Eigenvalues of a Graph
title_short On the Extended Adjacency Eigenvalues of a Graph
title_sort on the extended adjacency eigenvalues of a graph
topic graphs
eigenvalues
spectral radius
extended adjacency eigenvalues
extended adjacency energy
url https://www.mdpi.com/2078-2489/15/10/586
work_keys_str_mv AT alaaaltassan ontheextendedadjacencyeigenvaluesofagraph
AT hilalaganie ontheextendedadjacencyeigenvaluesofagraph
AT yilunshang ontheextendedadjacencyeigenvaluesofagraph