Restricting ionic liquid in a network comprising of GO/CNT as a separation membrane for efficient CO2 capture
The release of carbon dioxide (CO2) to the atmosphere remains a critical challenge in addressing climate change, with emissions from power plants being a primary contributor. Membrane-based separation processes offer cost-effective, robust, and energy efficient alternatives to CO2 capture from power...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
KeAi Communications Co. Ltd.
2025-01-01
|
| Series: | Advanced Membranes |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2772823425000326 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850111713691566080 |
|---|---|
| author | Dinesh K. Behera Fan Wang Bratin Sengupta Qiaobei Dong Weiwei Xu Shiguang Li Miao Yu |
| author_facet | Dinesh K. Behera Fan Wang Bratin Sengupta Qiaobei Dong Weiwei Xu Shiguang Li Miao Yu |
| author_sort | Dinesh K. Behera |
| collection | DOAJ |
| description | The release of carbon dioxide (CO2) to the atmosphere remains a critical challenge in addressing climate change, with emissions from power plants being a primary contributor. Membrane-based separation processes offer cost-effective, robust, and energy efficient alternatives to CO2 capture from power plants. Ionic liquids (IL), known for their high CO2 affinity, low vapor pressure, and high thermal stability, are propitious materials for such separations. In this study, we try to address major challenges currently restricting IL-based membranes including the porous structure for loading IL and the loading procedure onto the porous structure. An ultrathin (∼230 nm) 2–dimensional composite network comprising of graphene oxide (GO) sheets intercalated carbon nanotubes (CNT) spatially confining IL targeting high CO2 permeance was designed and fabricated. An IL, 1-ethyl-3 methylimidazolium tetrafluoroborate ([EMIM][BF4] was used as the active separating medium. This GO/CNT hybrid network not only stabilizes the IL within the nanochannels because of interactions between cations of IL and negatively charged functional groups on GO (carboxyl, hydroxyl and carboxy groups) but also facilitates faster transport (increased nanochannels because of CNT incorporation) yielding a CO2 permeance of ∼600 GPU (one order of magnitude higher than reported membranes employing the same ionic liquid) and a CO2/N2 selectivity of 62 under humid conditions and elevated temperatures (up to 80 °C). Our approach provides a modified strategy of using ionic liquids in the solution form as opposed to most studies using pure form for obtaining a scalable, ultrathin, stable supported IL membrane. |
| format | Article |
| id | doaj-art-de1544e1bffa453491f99c26a4e9ddb8 |
| institution | OA Journals |
| issn | 2772-8234 |
| language | English |
| publishDate | 2025-01-01 |
| publisher | KeAi Communications Co. Ltd. |
| record_format | Article |
| series | Advanced Membranes |
| spelling | doaj-art-de1544e1bffa453491f99c26a4e9ddb82025-08-20T02:37:33ZengKeAi Communications Co. Ltd.Advanced Membranes2772-82342025-01-01510015810.1016/j.advmem.2025.100158Restricting ionic liquid in a network comprising of GO/CNT as a separation membrane for efficient CO2 captureDinesh K. Behera0Fan Wang1Bratin Sengupta2Qiaobei Dong3Weiwei Xu4Shiguang Li5Miao Yu6Department of Chemical and Biological Engineering, The State University of New York, University at Buffalo, NY, 14260, United StatesDepartment of Chemical and Biological Engineering, The State University of New York, University at Buffalo, NY, 14260, United StatesDepartment of Chemical and Biological Engineering, The State University of New York, University at Buffalo, NY, 14260, United StatesGas Technology Institute, 1700 S, Mount Prospect Road, Des Plaines, IL, 60018, United StatesGas Technology Institute, 1700 S, Mount Prospect Road, Des Plaines, IL, 60018, United StatesGas Technology Institute, 1700 S, Mount Prospect Road, Des Plaines, IL, 60018, United StatesDepartment of Chemical and Biological Engineering, The State University of New York, University at Buffalo, NY, 14260, United States; RENEW Institute, The State University of New York, University at Buffalo, NY, 14260, United States; Corresponding author. Department of Chemical and Biological Engineering, The State University of New York, University at Buffalo, NY, 14260, United States.The release of carbon dioxide (CO2) to the atmosphere remains a critical challenge in addressing climate change, with emissions from power plants being a primary contributor. Membrane-based separation processes offer cost-effective, robust, and energy efficient alternatives to CO2 capture from power plants. Ionic liquids (IL), known for their high CO2 affinity, low vapor pressure, and high thermal stability, are propitious materials for such separations. In this study, we try to address major challenges currently restricting IL-based membranes including the porous structure for loading IL and the loading procedure onto the porous structure. An ultrathin (∼230 nm) 2–dimensional composite network comprising of graphene oxide (GO) sheets intercalated carbon nanotubes (CNT) spatially confining IL targeting high CO2 permeance was designed and fabricated. An IL, 1-ethyl-3 methylimidazolium tetrafluoroborate ([EMIM][BF4] was used as the active separating medium. This GO/CNT hybrid network not only stabilizes the IL within the nanochannels because of interactions between cations of IL and negatively charged functional groups on GO (carboxyl, hydroxyl and carboxy groups) but also facilitates faster transport (increased nanochannels because of CNT incorporation) yielding a CO2 permeance of ∼600 GPU (one order of magnitude higher than reported membranes employing the same ionic liquid) and a CO2/N2 selectivity of 62 under humid conditions and elevated temperatures (up to 80 °C). Our approach provides a modified strategy of using ionic liquids in the solution form as opposed to most studies using pure form for obtaining a scalable, ultrathin, stable supported IL membrane.http://www.sciencedirect.com/science/article/pii/S2772823425000326 |
| spellingShingle | Dinesh K. Behera Fan Wang Bratin Sengupta Qiaobei Dong Weiwei Xu Shiguang Li Miao Yu Restricting ionic liquid in a network comprising of GO/CNT as a separation membrane for efficient CO2 capture Advanced Membranes |
| title | Restricting ionic liquid in a network comprising of GO/CNT as a separation membrane for efficient CO2 capture |
| title_full | Restricting ionic liquid in a network comprising of GO/CNT as a separation membrane for efficient CO2 capture |
| title_fullStr | Restricting ionic liquid in a network comprising of GO/CNT as a separation membrane for efficient CO2 capture |
| title_full_unstemmed | Restricting ionic liquid in a network comprising of GO/CNT as a separation membrane for efficient CO2 capture |
| title_short | Restricting ionic liquid in a network comprising of GO/CNT as a separation membrane for efficient CO2 capture |
| title_sort | restricting ionic liquid in a network comprising of go cnt as a separation membrane for efficient co2 capture |
| url | http://www.sciencedirect.com/science/article/pii/S2772823425000326 |
| work_keys_str_mv | AT dineshkbehera restrictingionicliquidinanetworkcomprisingofgocntasaseparationmembraneforefficientco2capture AT fanwang restrictingionicliquidinanetworkcomprisingofgocntasaseparationmembraneforefficientco2capture AT bratinsengupta restrictingionicliquidinanetworkcomprisingofgocntasaseparationmembraneforefficientco2capture AT qiaobeidong restrictingionicliquidinanetworkcomprisingofgocntasaseparationmembraneforefficientco2capture AT weiweixu restrictingionicliquidinanetworkcomprisingofgocntasaseparationmembraneforefficientco2capture AT shiguangli restrictingionicliquidinanetworkcomprisingofgocntasaseparationmembraneforefficientco2capture AT miaoyu restrictingionicliquidinanetworkcomprisingofgocntasaseparationmembraneforefficientco2capture |