Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms

The Brezzi–Douglas–Marini interpolation error on anisotropic elements has been analyzed in two recent publications, the first focusing on simplices with estimates in $L^2$, the other considering parallelotopes with estimates in terms of $L^p$-norms. This contribution provides generalized estimates f...

Full description

Saved in:
Bibliographic Details
Main Author: Kempf, Volker
Format: Article
Language:English
Published: Académie des sciences 2023-01-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.424/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206270901092352
author Kempf, Volker
author_facet Kempf, Volker
author_sort Kempf, Volker
collection DOAJ
description The Brezzi–Douglas–Marini interpolation error on anisotropic elements has been analyzed in two recent publications, the first focusing on simplices with estimates in $L^2$, the other considering parallelotopes with estimates in terms of $L^p$-norms. This contribution provides generalized estimates for anisotropic simplices for the $L^p$ case, $1\le p\le \infty $, and shows new estimates for anisotropic prisms with triangular base.
format Article
id doaj-art-de109b52989547fe986838e9a8a11dfc
institution Kabale University
issn 1778-3569
language English
publishDate 2023-01-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-de109b52989547fe986838e9a8a11dfc2025-02-07T11:06:08ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-01-01361G143744310.5802/crmath.42410.5802/crmath.424Brezzi–Douglas–Marini interpolation on anisotropic simplices and prismsKempf, Volker0https://orcid.org/0000-0002-6251-5929Universität der Bundeswehr München, GermanyThe Brezzi–Douglas–Marini interpolation error on anisotropic elements has been analyzed in two recent publications, the first focusing on simplices with estimates in $L^2$, the other considering parallelotopes with estimates in terms of $L^p$-norms. This contribution provides generalized estimates for anisotropic simplices for the $L^p$ case, $1\le p\le \infty $, and shows new estimates for anisotropic prisms with triangular base.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.424/
spellingShingle Kempf, Volker
Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms
Comptes Rendus. Mathématique
title Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms
title_full Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms
title_fullStr Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms
title_full_unstemmed Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms
title_short Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms
title_sort brezzi douglas marini interpolation on anisotropic simplices and prisms
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.424/
work_keys_str_mv AT kempfvolker brezzidouglasmariniinterpolationonanisotropicsimplicesandprisms