Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms
The Brezzi–Douglas–Marini interpolation error on anisotropic elements has been analyzed in two recent publications, the first focusing on simplices with estimates in $L^2$, the other considering parallelotopes with estimates in terms of $L^p$-norms. This contribution provides generalized estimates f...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-01-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.424/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825206270901092352 |
---|---|
author | Kempf, Volker |
author_facet | Kempf, Volker |
author_sort | Kempf, Volker |
collection | DOAJ |
description | The Brezzi–Douglas–Marini interpolation error on anisotropic elements has been analyzed in two recent publications, the first focusing on simplices with estimates in $L^2$, the other considering parallelotopes with estimates in terms of $L^p$-norms. This contribution provides generalized estimates for anisotropic simplices for the $L^p$ case, $1\le p\le \infty $, and shows new estimates for anisotropic prisms with triangular base. |
format | Article |
id | doaj-art-de109b52989547fe986838e9a8a11dfc |
institution | Kabale University |
issn | 1778-3569 |
language | English |
publishDate | 2023-01-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj-art-de109b52989547fe986838e9a8a11dfc2025-02-07T11:06:08ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-01-01361G143744310.5802/crmath.42410.5802/crmath.424Brezzi–Douglas–Marini interpolation on anisotropic simplices and prismsKempf, Volker0https://orcid.org/0000-0002-6251-5929Universität der Bundeswehr München, GermanyThe Brezzi–Douglas–Marini interpolation error on anisotropic elements has been analyzed in two recent publications, the first focusing on simplices with estimates in $L^2$, the other considering parallelotopes with estimates in terms of $L^p$-norms. This contribution provides generalized estimates for anisotropic simplices for the $L^p$ case, $1\le p\le \infty $, and shows new estimates for anisotropic prisms with triangular base.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.424/ |
spellingShingle | Kempf, Volker Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms Comptes Rendus. Mathématique |
title | Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms |
title_full | Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms |
title_fullStr | Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms |
title_full_unstemmed | Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms |
title_short | Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms |
title_sort | brezzi douglas marini interpolation on anisotropic simplices and prisms |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.424/ |
work_keys_str_mv | AT kempfvolker brezzidouglasmariniinterpolationonanisotropicsimplicesandprisms |