Automation of protein crystallization scaleup via Opentrons-2 liquid handling

In this study we present an approach for optimizing protein crystallization trials at the multi-microliter scale utilizing the Opentrons-2 liquid handling robot. Our research demonstrates the robot's capability to automate 24-well sitting drop protein crystallization trials. Using Python script...

Full description

Saved in:
Bibliographic Details
Main Authors: Jacob B. DeRoo, Alec A. Jones, Caroline K. Slaughter, Tim W. Ahr, Sam M. Stroup, Grace B. Thompson, Christopher D. Snow
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:SLAS Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2472630325000263
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study we present an approach for optimizing protein crystallization trials at the multi-microliter scale utilizing the Opentrons-2 liquid handling robot. Our research demonstrates the robot's capability to automate 24-well sitting drop protein crystallization trials. Using Python scripts for precise control, the study explores the robot's application in mixing and setting up crystallization plates with a model protein (hen egg white lysozyme) and a periplasmic protein from Campylobacter jejuni, a crystal utilized in the Snow lab as a biomaterial for nanotechnology that requires large, consistent batches. In a head-to-head comparison with manual 24-well plate setup, crystal growth statistics indicate our approach can reduce manual labor and increase reliability in protein crystallization, and may also reduce variability, offering an economical and versatile tool for laboratories. This study shows facile adaption of the Opentrons interface and hardware for growth of two different crystal types. All developed liquid handling routines and relevant data files, in addition to demonstration videos are available at https://github.com/jbderoo/Opentrons2-Protein-Crystallization
ISSN:2472-6303