Krein–Sobolev Orthogonal Polynomials II
In a recent paper, Littlejohn and Quintero studied the orthogonal polynomials <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo>{</mo><msub><mi>K</mi><mi&g...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/14/2/115 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849720218610302976 |
|---|---|
| author | Alexander Jones Lance Littlejohn Alejandro Quintero Roba |
| author_facet | Alexander Jones Lance Littlejohn Alejandro Quintero Roba |
| author_sort | Alexander Jones |
| collection | DOAJ |
| description | In a recent paper, Littlejohn and Quintero studied the orthogonal polynomials <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo>{</mo><msub><mi>K</mi><mi>n</mi></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mo>∞</mo></msubsup></semantics></math></inline-formula>—which they named <i>Krein–Sobolev polynomials</i>—that are orthogonal in the classical Sobolev space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mn>1</mn></msup><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></semantics></math></inline-formula> with respect to the (positive-definite) inner product <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>,</mo><mi>c</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>−</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><mfenced separators="" open="(" close=")"><mi>f</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>−</mo><mi>f</mi><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mfenced><mfenced separators="" open="(" close=")"><mover><mi>g</mi><mo>¯</mo></mover><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>−</mo><mover><mi>g</mi><mo>¯</mo></mover><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mfenced></mrow><mn>2</mn></mfrac></mstyle><mo>+</mo><msubsup><mo>∫</mo><mrow><mo>−</mo><mn>1</mn></mrow><mn>1</mn></msubsup><mrow><mo>(</mo><msup><mi>f</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mover><mi>g</mi><mo>¯</mo></mover><mo>′</mo></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mover><mi>g</mi><mo>¯</mo></mover><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>d</mi><mi>x</mi><mo>,</mo></mrow></semantics></math></inline-formula> where <i>c</i> is a fixed, positive constant. These polynomials generalize the Althammer (or Legendre–Sobolev) polynomials first studied by Althammer and Schäfke. The Krein–Sobolev polynomials were found as a result of a left-definite spectral study of the self-adjoint Krein Laplacian operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">K</mi><mi>c</mi></msub></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>c</mi><mo>></mo><mn>0</mn><mo>)</mo></mrow></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> Other than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mn>0</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>K</mi><mn>1</mn></msub><mo>,</mo></mrow></semantics></math></inline-formula> these polynomials are not eigenfunctions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">K</mi><mi>c</mi></msub><mo>.</mo></mrow></semantics></math></inline-formula> As shown by Littlejohn and Quintero, the sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo>{</mo><msub><mi>K</mi><mi>n</mi></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mo>∞</mo></msubsup></semantics></math></inline-formula> forms a complete orthogonal set in the first left-definite space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>H</mi><mn>1</mn></msup><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>,</mo><msub><mrow><mo>(</mo><mo>·</mo><mo>,</mo><mo>·</mo><mo>)</mo></mrow><mrow><mn>1</mn><mo>,</mo><mi>c</mi></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> associated with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi mathvariant="script">K</mi><mi>c</mi></msub><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Furthermore, they show that, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>K</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> has <i>n</i> distinct zeros in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> In this note, we find an explicit formula for Krein–Sobolev polynomials <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo>{</mo><msub><mi>K</mi><mi>n</mi></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mo>∞</mo></msubsup></semantics></math></inline-formula>. |
| format | Article |
| id | doaj-art-ddf8979a1ff940bfa286ec2aefe05db4 |
| institution | DOAJ |
| issn | 2075-1680 |
| language | English |
| publishDate | 2025-02-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Axioms |
| spelling | doaj-art-ddf8979a1ff940bfa286ec2aefe05db42025-08-20T03:11:58ZengMDPI AGAxioms2075-16802025-02-0114211510.3390/axioms14020115Krein–Sobolev Orthogonal Polynomials IIAlexander Jones0Lance Littlejohn1Alejandro Quintero Roba2Department of Mathematics, Baylor University, Sid Richardson Science Building, 1410 S. 4th Street, Waco, TX 76706, USADepartment of Mathematics, Baylor University, Sid Richardson Science Building, 1410 S. 4th Street, Waco, TX 76706, USADepartment of Mathematics, Baylor University, Sid Richardson Science Building, 1410 S. 4th Street, Waco, TX 76706, USAIn a recent paper, Littlejohn and Quintero studied the orthogonal polynomials <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo>{</mo><msub><mi>K</mi><mi>n</mi></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mo>∞</mo></msubsup></semantics></math></inline-formula>—which they named <i>Krein–Sobolev polynomials</i>—that are orthogonal in the classical Sobolev space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mn>1</mn></msup><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></semantics></math></inline-formula> with respect to the (positive-definite) inner product <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow><mrow><mn>1</mn><mo>,</mo><mi>c</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>−</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mrow><mfenced separators="" open="(" close=")"><mi>f</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>−</mo><mi>f</mi><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mfenced><mfenced separators="" open="(" close=")"><mover><mi>g</mi><mo>¯</mo></mover><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>−</mo><mover><mi>g</mi><mo>¯</mo></mover><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mfenced></mrow><mn>2</mn></mfrac></mstyle><mo>+</mo><msubsup><mo>∫</mo><mrow><mo>−</mo><mn>1</mn></mrow><mn>1</mn></msubsup><mrow><mo>(</mo><msup><mi>f</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mover><mi>g</mi><mo>¯</mo></mover><mo>′</mo></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>c</mi><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mover><mi>g</mi><mo>¯</mo></mover><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>d</mi><mi>x</mi><mo>,</mo></mrow></semantics></math></inline-formula> where <i>c</i> is a fixed, positive constant. These polynomials generalize the Althammer (or Legendre–Sobolev) polynomials first studied by Althammer and Schäfke. The Krein–Sobolev polynomials were found as a result of a left-definite spectral study of the self-adjoint Krein Laplacian operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">K</mi><mi>c</mi></msub></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>c</mi><mo>></mo><mn>0</mn><mo>)</mo></mrow></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> Other than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mn>0</mn></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>K</mi><mn>1</mn></msub><mo>,</mo></mrow></semantics></math></inline-formula> these polynomials are not eigenfunctions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="script">K</mi><mi>c</mi></msub><mo>.</mo></mrow></semantics></math></inline-formula> As shown by Littlejohn and Quintero, the sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo>{</mo><msub><mi>K</mi><mi>n</mi></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mo>∞</mo></msubsup></semantics></math></inline-formula> forms a complete orthogonal set in the first left-definite space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>H</mi><mn>1</mn></msup><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>,</mo><msub><mrow><mo>(</mo><mo>·</mo><mo>,</mo><mo>·</mo><mo>)</mo></mrow><mrow><mn>1</mn><mo>,</mo><mi>c</mi></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> associated with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi mathvariant="script">K</mi><mi>c</mi></msub><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Furthermore, they show that, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>K</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> has <i>n</i> distinct zeros in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>.</mo></mrow></semantics></math></inline-formula> In this note, we find an explicit formula for Krein–Sobolev polynomials <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo>{</mo><msub><mi>K</mi><mi>n</mi></msub><mo>}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mo>∞</mo></msubsup></semantics></math></inline-formula>.https://www.mdpi.com/2075-1680/14/2/115one-dimensional Krein Laplacian self-adjoint operatorleft-definite spectral theoryAlthammer polynomialsKrein–Sobolev polynomials |
| spellingShingle | Alexander Jones Lance Littlejohn Alejandro Quintero Roba Krein–Sobolev Orthogonal Polynomials II Axioms one-dimensional Krein Laplacian self-adjoint operator left-definite spectral theory Althammer polynomials Krein–Sobolev polynomials |
| title | Krein–Sobolev Orthogonal Polynomials II |
| title_full | Krein–Sobolev Orthogonal Polynomials II |
| title_fullStr | Krein–Sobolev Orthogonal Polynomials II |
| title_full_unstemmed | Krein–Sobolev Orthogonal Polynomials II |
| title_short | Krein–Sobolev Orthogonal Polynomials II |
| title_sort | krein sobolev orthogonal polynomials ii |
| topic | one-dimensional Krein Laplacian self-adjoint operator left-definite spectral theory Althammer polynomials Krein–Sobolev polynomials |
| url | https://www.mdpi.com/2075-1680/14/2/115 |
| work_keys_str_mv | AT alexanderjones kreinsobolevorthogonalpolynomialsii AT lancelittlejohn kreinsobolevorthogonalpolynomialsii AT alejandroquinteroroba kreinsobolevorthogonalpolynomialsii |