The role of heat shock protein 90 in idiopathic pulmonary fibrosis: state of the art

Heat shock protein 90 (HSP 90) and its isoforms are a group of homodimeric proteins that regulate several cellular processes, such as the elimination of misfolded proteins, cell development and post-translational modifications of kinase proteins and receptors. Due to its involvement in extracellular...

Full description

Saved in:
Bibliographic Details
Main Authors: Giorgio Monteleone, Paolo Cameli, Francesco Bonella
Format: Article
Language:English
Published: European Respiratory Society 2025-03-01
Series:European Respiratory Review
Online Access:http://err.ersjournals.com/content/34/175/240147.full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heat shock protein 90 (HSP 90) and its isoforms are a group of homodimeric proteins that regulate several cellular processes, such as the elimination of misfolded proteins, cell development and post-translational modifications of kinase proteins and receptors. Due to its involvement in extracellular matrix (ECM) remodelling, myofibroblast differentiation and apoptosis, HSP 90 has been investigated as a key player in the pathogenesis of lung fibrosis. Idiopathic pulmonary fibrosis (IPF) is the most common and deadly interstitial lung disease, due to the progressive distortion of lung parenchyma related to the overproduction and deposition of altered ECM, driven by transforming growth factor-β (TGF-β) dependent and independent pathways. The inhibition or induction of HSP 90 is associated with a reduced or increased expression of TGF-β receptors, respectively, suggesting a role for HSP 90 as a biomarker and therapeutic target in IPF. Experimental drugs such as geldanamycin and its derivatives 17-AAG (17-N-allylamino-17-demethoxygeldanamicin) and 17-DMAG (17-dimethylaminoethylamino-17-demethoxigeldanamycin), along with AUY-922, 1G6-D7, AT-13387, TAS-116 and myricetin, have been found to reduce lung fibrosis in both in vivo and in vitro models, supporting the role of this emerging target. This review aims to illustrate the structure and biological function of HSP 90 in the context of IPF pathobiology, as well as perspective application of this molecule as a biomarker and therapeutic target for IPF.
ISSN:0905-9180
1600-0617