高能量<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi mathvariant="bold">α</mml:mi></mml:math></inline-formula>粒子在扰动磁偶极场中的约束研究
在悬浮磁偶极场约束装置中,姿态控制系线圈(Tilt-Slide-Rotate,TSR)或者由高能量的粒子共振(Resonant Line Field,RLF)激发磁场会破坏背景磁场的拓扑结构,进而影响粒子约束。由于<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mi mathvariant="normal">α</mml:mi></mml:math>&l...
Saved in:
| Main Authors: | 刘 腾, 王 召, 张 国书, 杜 俊杰 |
|---|---|
| Format: | Article |
| Language: | zho |
| Published: |
Science Press
2025-06-01
|
| Series: | He jishu |
| Subjects: | |
| Online Access: | https://www.sciengine.com/doi/10.11889/j.0253-3219.2025.hjs.48.240362 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
On <mml:math display="inline"><mml:mi>n</mml:mi></mml:math>-derivations of generalized matrix algebras
by: Aisha Jabeen
Published: (2024-01-01) -
<mml:math display="inline"><mml:mi>k</mml:mi></mml:math>-Srivastava hypergeometric functions and their integral representations
by: Sena Halıcı, et al.
Published: (2024-01-01) -
<mml:math display="inline"><mml:mrow><mml:mi>B</mml:mi><mml:mo class="MathClass-bin" stretchy="false">−</mml:mo></mml:mrow></mml:math>maximal and <mml:math display="inline"><mml:mrow><mml:mi>B</mml:mi><mml:mo class="MathClass-bin" stretchy="false">−</mml:mo></mml:mrow></mml:math>singular integral operators in <mml:math display="inline"><mml:mrow><mml:mi>B</mml:mi><mml:mo class="MathClass-bin" stretchy="false">−</mml:mo></mml:mrow></mml:math>local Morrey-Lorentz spaces
by: Esra Kaya, et al.
Published: (2025-01-01) -
On operators whose core–EP inverse is <mml:math display="inline"><mml:mi>n</mml:mi></mml:math>-potent
by: Dijana Mosić, et al.
Published: (2024-01-01) -
<mml:math display="inline"><mml:mrow><mml:mi>M</mml:mi><mml:mo class="MathClass-bin" stretchy="false">−</mml:mo></mml:mrow></mml:math>estimation in periodic Threshold <mml:math display="inline"><mml:mrow><mml:mi mathvariant="italic">GARCH</mml:mi></mml:mrow></mml:math> models: Consistency and asymptotic normality
by: Ahmed Ghezal, et al.
Published: (2025-01-01)