Self-triggered strong-field QED collisions in laser-plasma interaction
Exploring quantum electrodynamics in the most extreme conditions, where electron-positron pairs can emerge in the presence of a strong background field, is now becoming possible in Compton collisions between ultraintense lasers and energetic electrons. In the strong-field regime, the colliding elect...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
American Physical Society
2025-07-01
|
| Series: | Physical Review Research |
| Online Access: | http://doi.org/10.1103/PhysRevResearch.7.L032011 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Exploring quantum electrodynamics in the most extreme conditions, where electron-positron pairs can emerge in the presence of a strong background field, is now becoming possible in Compton collisions between ultraintense lasers and energetic electrons. In the strong-field regime, the colliding electron emits γ rays that decay into pairs in the strong laser field. While the combination of conventional accelerators and lasers of sufficient power poses significant challenges, laser-plasma accelerators offer a promising alternative for producing the required multi-GeV electron beams. To overcome the complexities of colliding these beams with another ultraintense laser pulse, we propose a scheme in which a single laser pulse both accelerates the electrons and collides with them after self-focusing in a dedicated plasma section and reflecting off a plasma mirror. The laser intensity boost in the plasma allows the quantum interaction parameter to be greatly increased. Using full-scale numerical simulations, we demonstrate that a single 100J laser pulse can achieve a deep quantum regime with electric fields in the electron rest frame as high as χ_{e}∼5 times the Schwinger critical field, resulting in the production of about 40 pC of positrons. |
|---|---|
| ISSN: | 2643-1564 |