Scalable and durable module-sized artificial leaf with a solar-to-hydrogen efficiency over 10%
Abstract An artificial leaf mimicking the function of a natural leaf has recently attracted significant attention due to its minimal space requirement and low cost compared to wired photoelectrochemical and photovoltaic-electrochemical systems for solar hydrogen production. However, it remains a cha...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-05-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-59597-2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract An artificial leaf mimicking the function of a natural leaf has recently attracted significant attention due to its minimal space requirement and low cost compared to wired photoelectrochemical and photovoltaic-electrochemical systems for solar hydrogen production. However, it remains a challenge to achieve a practical-size solar water-splitting device that can fulfill the criteria of a solar-to-hydrogen conversion efficiency above 10%, long-term durability, and scalability. Here, we develop 1 cm2 perovskite-based photoelectrodes using a defect-less, chlorine-doped formamidinium lead triiodide as photo-absorber and ultraviolet-insensitive tin oxide as an electron transport layers. This device is encapsulated using electrocatalyst-deposited nickel foils, which demonstrates high photocurrent density and high stability for 140 h. Ultimately, we fabricate a scalable mini-module-sized artificial leaf (16 cm2) consisting of a side-by-side/parallel configuration of photoanode and photocathode architecture integrated with a 4 × 4 array of 1 cm2 photoelectrodes, which maintains a stable ‘module-level’ solar-to-hydrogen efficiency of 11.2% in an unbiased solar water-splitting under 1-sun illumination. |
|---|---|
| ISSN: | 2041-1723 |