Optimizing TSP-MMC Performance in Non-Homogeneous Environments

The Travelling Salesman Problem (TSP) for determining the optimal trajectory in a non-homogeneous space is related to the variational problem of Fermat's principle, which seeks the path of an optical ray in a medium. Generally, finding such an optimal trajectory is a considerable challenge, es...

Full description

Saved in:
Bibliographic Details
Main Authors: Yessica Yazmín Calderon-Segura, Gennadiy Burlak, Jośe Antonio García Pacheco
Format: Article
Language:English
Published: Universidad Autónoma del Estado de Morelos 2025-06-01
Series:Programación Matemática y Software
Subjects:
Online Access:https://progmat.uaem.mx/progmat/index.php/progmat/article/view/316
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849722656393265152
author Yessica Yazmín Calderon-Segura
Gennadiy Burlak
Jośe Antonio García Pacheco
author_facet Yessica Yazmín Calderon-Segura
Gennadiy Burlak
Jośe Antonio García Pacheco
author_sort Yessica Yazmín Calderon-Segura
collection DOAJ
description The Travelling Salesman Problem (TSP) for determining the optimal trajectory in a non-homogeneous space is related to the variational problem of Fermat's principle, which seeks the path of an optical ray in a medium. Generally, finding such an optimal trajectory is a considerable challenge, especially in structures with a large number of emitters randomly distributed. To address this problem, we propose using the hybrid TSP-MMC algorithm to identify the minimum optical path S that connects the emitters embedded in a percolating cluster. This approach will compensate for the deviations introduced by the transmission of a light beam through the percolation cluster, achieving an intensity distribution tailored to user needs. We have demonstrated that our technique can achieve solutions that improve efficiency by 60% compared to optimal values for light beam optimization data. This technique could be applied to visualize blood vessels in both static and dynamic contexts, making it useful in the biological field for cellular and bacterial samples.
format Article
id doaj-art-dd422e0f2d114c8dba1fed060581a09a
institution DOAJ
issn 2007-3283
language English
publishDate 2025-06-01
publisher Universidad Autónoma del Estado de Morelos
record_format Article
series Programación Matemática y Software
spelling doaj-art-dd422e0f2d114c8dba1fed060581a09a2025-08-20T03:11:17ZengUniversidad Autónoma del Estado de MorelosProgramación Matemática y Software2007-32832025-06-0117210.30973/progmat/2025.17.2/1Optimizing TSP-MMC Performance in Non-Homogeneous EnvironmentsYessica Yazmín Calderon-Segura0Gennadiy Burlak1Jośe Antonio García Pacheco2Universidad Autónoma del Estado de Morelos. Centro de Investigación en Ingeniería y Ciencias Aplicadas/Facultad de Contabilidad, Administración e Informática. Cuernavaca, Morelos. México Universidad Autónoma del Estado de Morelos. Centro de Investigación en Ingeniería y Ciencias Aplicadas. Cuernavaca, Morelos. México Universidad Autónoma del Estado de Morelos. Centro de Investigación en Ingeniería y Ciencias Aplicadas. Cuernavaca, Morelos. México The Travelling Salesman Problem (TSP) for determining the optimal trajectory in a non-homogeneous space is related to the variational problem of Fermat's principle, which seeks the path of an optical ray in a medium. Generally, finding such an optimal trajectory is a considerable challenge, especially in structures with a large number of emitters randomly distributed. To address this problem, we propose using the hybrid TSP-MMC algorithm to identify the minimum optical path S that connects the emitters embedded in a percolating cluster. This approach will compensate for the deviations introduced by the transmission of a light beam through the percolation cluster, achieving an intensity distribution tailored to user needs. We have demonstrated that our technique can achieve solutions that improve efficiency by 60% compared to optimal values for light beam optimization data. This technique could be applied to visualize blood vessels in both static and dynamic contexts, making it useful in the biological field for cellular and bacterial samples. https://progmat.uaem.mx/progmat/index.php/progmat/article/view/316Optimizationpercolation clusterlight beam optimizationFermat's principleMonte Carlo methodTSP
spellingShingle Yessica Yazmín Calderon-Segura
Gennadiy Burlak
Jośe Antonio García Pacheco
Optimizing TSP-MMC Performance in Non-Homogeneous Environments
Programación Matemática y Software
Optimization
percolation cluster
light beam optimization
Fermat's principle
Monte Carlo method
TSP
title Optimizing TSP-MMC Performance in Non-Homogeneous Environments
title_full Optimizing TSP-MMC Performance in Non-Homogeneous Environments
title_fullStr Optimizing TSP-MMC Performance in Non-Homogeneous Environments
title_full_unstemmed Optimizing TSP-MMC Performance in Non-Homogeneous Environments
title_short Optimizing TSP-MMC Performance in Non-Homogeneous Environments
title_sort optimizing tsp mmc performance in non homogeneous environments
topic Optimization
percolation cluster
light beam optimization
Fermat's principle
Monte Carlo method
TSP
url https://progmat.uaem.mx/progmat/index.php/progmat/article/view/316
work_keys_str_mv AT yessicayazmincalderonsegura optimizingtspmmcperformanceinnonhomogeneousenvironments
AT gennadiyburlak optimizingtspmmcperformanceinnonhomogeneousenvironments
AT joseantoniogarciapacheco optimizingtspmmcperformanceinnonhomogeneousenvironments