Artificial Vision Systems for Mobility Impairment Detection: Integrating Synthetic Data, Ethical Considerations, and Real-World Applications
Global estimates suggest that over a billion people worldwide—more than 15% of the global population—live with some form of mobility disability, underscoring the pressing need for innovative technological solutions. Recent advancements in artificial vision systems, driven by deep learning and image...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Technologies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7080/13/5/198 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Global estimates suggest that over a billion people worldwide—more than 15% of the global population—live with some form of mobility disability, underscoring the pressing need for innovative technological solutions. Recent advancements in artificial vision systems, driven by deep learning and image processing techniques, offer promising avenues for detecting mobility aids and monitoring gait or posture anomalies. This paper presents a systematic review conducted in accordance with ProKnow-C guidelines, examining key methodologies, datasets, and ethical considerations in mobility impairment detection from 2015 to 2025. Our analysis reveals that convolutional neural network (CNN) approaches, such as YOLO and Faster R-CNN, frequently outperform traditional computer vision methods in accuracy and real-time efficiency, though their success depends on the availability of large, high-quality datasets that capture real-world variability. While synthetic data generation helps mitigate dataset limitations, models trained predominantly on simulated images often exhibit reduced performance in uncontrolled environments due to the domain gap. Moreover, ethical and privacy concerns related to the handling of sensitive visual data remain insufficiently addressed, highlighting the need for robust privacy safeguards, transparent data governance, and effective bias mitigation protocols. Overall, this review emphasizes the potential of artificial vision systems to transform assistive technologies for mobility impairments and calls for multidisciplinary efforts to ensure these systems are technically robust, ethically sound, and widely adoptable. |
|---|---|
| ISSN: | 2227-7080 |