A Novel Chiral Molecularly Imprinted Electrochemical Sensor Based on β-CD Functionalized Graphene Quantum Dots for Enantioselective Detection of D-Carnitine

In this study, β-cyclodextrin (β-CD) functionalized graphene quantum dots (GQDs) was employed to augment the array of chiral recognition sites, thereby enhancing the affinity of GQDs/β-CD composite for imprinting molecules and realizing heightened chiral selectivity. The incorporation of GQDs/β-CD i...

Full description

Saved in:
Bibliographic Details
Main Authors: Feng Yang, Xin Qi, Yan Chen, Kai Tang, Mengyang Fang, Yanwei Song, Jiufen Liu, Lianming Zhang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/14/9/1648
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, β-cyclodextrin (β-CD) functionalized graphene quantum dots (GQDs) was employed to augment the array of chiral recognition sites, thereby enhancing the affinity of GQDs/β-CD composite for imprinting molecules and realizing heightened chiral selectivity. The incorporation of GQDs/β-CD into the synthesis of molecularly imprinted polymers (MIPs), synergizing with the host-guest inclusion properties of β-CD and the abundant carboxyl groups of GQDs, enhanced the chiral recognition capacity of MIPs materials. Consequently, a novel MIPs/(GQDs/β-CD) sensor with chiral recognition capabilities tailored for D-carnitine was successfully fabricated. The binding mechanism between GQDs/β-CD and D-carnitine was elucidated via Ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. The variation in the response signal (ΔI) of the probe molecule exhibited a linear correlation with the logarithm of D-carnitine concentration (lgC) in the range of 1.0 × 10<sup>−12</sup> mol/L to 1.0 × 10<sup>−9</sup> mol/L, and the detection limit (3δ/S) was calculated as 2.35 × 10<sup>−13</sup> mol/L. These results underscore a 7.15-fold enhancement in the selectivity of MIPs/(GQDs/β-CD) sensor for D-carnitine recognition. Moreover, the sensor presented commendable efficacy in real-world scenarios, yielding recovery rates ranging from 98.5% to 103.0% during the determination of D-carnitine content in real samples.
ISSN:2304-8158