Anomaly-Guided Double Autoencoders for Hyperspectral Unmixing

Deep learning has emerged as a prevalent approach for hyperspectral unmixing. However, most existing unmixing methods employ a single network, resulting in moderate estimation errors and less meaningful endmembers and abundances. To address this imitation, this paper proposes a novel double autoenco...

Full description

Saved in:
Bibliographic Details
Main Authors: Hongyi Liu, Chenyang Zhang, Jianing Huang, Zhihui Wei
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/5/800
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deep learning has emerged as a prevalent approach for hyperspectral unmixing. However, most existing unmixing methods employ a single network, resulting in moderate estimation errors and less meaningful endmembers and abundances. To address this imitation, this paper proposes a novel double autoencoders-based unmixing method, consisting of an endmember extraction network and an abundance estimation network. In the endmember network, to improve the spectral discrimination, a logarithm spectral angle distance (SAD), integrated with anomaly-guided weight, is developed as the loss function. Specifically, the logarithm function is used to boost the reliability of a pixel based on its high SAD similarity to other pixels. Moreover, the anomaly-guided weight mitigates the influence of outliers. As for the abundance network, a spectral convolutional autoencoder combined with the channel attention module is employed to exploit the spectral features. Additionally, the decoder weight is shared between the two networks to reduce computational complexity. Extensive comparative experiments with state-of-the-art unmixing methods demonstrate that the proposed method achieves superior performance in both endmember extraction and abundance estimation.
ISSN:2072-4292