On Orthogonal Projections of Symplectic Balls

We study the orthogonal projections of symplectic balls in $\mathbb{R}^{2n}$ on complex subspaces. In particular we show that these projections are themselves symplectic balls under a certain complexity assumption. Our main result is a refinement of a recent very interesting result of Abbondandolo a...

Full description

Saved in:
Bibliographic Details
Main Authors: Dias, Nuno C., de Gosson, Maurice A., Prata, João N.
Format: Article
Language:English
Published: Académie des sciences 2024-05-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.542/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206270408261632
author Dias, Nuno C.
de Gosson, Maurice A.
Prata, João N.
author_facet Dias, Nuno C.
de Gosson, Maurice A.
Prata, João N.
author_sort Dias, Nuno C.
collection DOAJ
description We study the orthogonal projections of symplectic balls in $\mathbb{R}^{2n}$ on complex subspaces. In particular we show that these projections are themselves symplectic balls under a certain complexity assumption. Our main result is a refinement of a recent very interesting result of Abbondandolo and Matveyev extending the linear version of Gromov’s non-squeezing theorem. We use a conceptually simpler approach where the Schur complement of a matrix plays a central role. An application to the partial traces of density matrices is given.
format Article
id doaj-art-dcdecd3594f24b9ebea9e2b7413b90af
institution Kabale University
issn 1778-3569
language English
publishDate 2024-05-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-dcdecd3594f24b9ebea9e2b7413b90af2025-02-07T11:19:53ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-05-01362G321722710.5802/crmath.54210.5802/crmath.542On Orthogonal Projections of Symplectic BallsDias, Nuno C.0de Gosson, Maurice A.1Prata, João N.2Escola Superior Náutica Infante D. Henrique. Av. Eng. Bonneville Franco, 2770-058 Paço d’Arcos, Portugal; Grupo de Física Matemática, Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, PortugalUniversity of Vienna, Faculty of Mathematics (NuHAG), Vienna, AustriaEscola Superior Náutica Infante D. Henrique. Av. Eng. Bonneville Franco, 2770-058 Paço d’Arcos, Portugal; Grupo de Física Matemática, Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, PortugalWe study the orthogonal projections of symplectic balls in $\mathbb{R}^{2n}$ on complex subspaces. In particular we show that these projections are themselves symplectic balls under a certain complexity assumption. Our main result is a refinement of a recent very interesting result of Abbondandolo and Matveyev extending the linear version of Gromov’s non-squeezing theorem. We use a conceptually simpler approach where the Schur complement of a matrix plays a central role. An application to the partial traces of density matrices is given.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.542/Symplectic ballorthogonal projectionGromov’s non-squeezing theorem
spellingShingle Dias, Nuno C.
de Gosson, Maurice A.
Prata, João N.
On Orthogonal Projections of Symplectic Balls
Comptes Rendus. Mathématique
Symplectic ball
orthogonal projection
Gromov’s non-squeezing theorem
title On Orthogonal Projections of Symplectic Balls
title_full On Orthogonal Projections of Symplectic Balls
title_fullStr On Orthogonal Projections of Symplectic Balls
title_full_unstemmed On Orthogonal Projections of Symplectic Balls
title_short On Orthogonal Projections of Symplectic Balls
title_sort on orthogonal projections of symplectic balls
topic Symplectic ball
orthogonal projection
Gromov’s non-squeezing theorem
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.542/
work_keys_str_mv AT diasnunoc onorthogonalprojectionsofsymplecticballs
AT degossonmauricea onorthogonalprojectionsofsymplecticballs
AT pratajoaon onorthogonalprojectionsofsymplecticballs