Flat bands on a spherical surface from Landau levels to giant-quantum-number orbitals
Abstract Flat bands result in a divergent density of states and high sensitivity to interactions in physical systems. While such bands are well known in systems under magnetic fields, their realization and behavior in zero-field settings remain largely unexplored. Here we compare the behavior of ele...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Communications Physics |
| Online Access: | https://doi.org/10.1038/s42005-025-02208-9 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Flat bands result in a divergent density of states and high sensitivity to interactions in physical systems. While such bands are well known in systems under magnetic fields, their realization and behavior in zero-field settings remain largely unexplored. Here we compare the behavior of electrons confined to a single flat band on the surface of a sphere to those in flat bands under a magnetic field. The zero-field flat band exhibits an additional C(2) symmetry, which causes electrons to symmetrically cluster on opposite sides of the sphere’s center when a trapping potential is introduced, resulting in a unique form of long-range “entanglement”. To explore these findings experimentally, we propose a feasible setup to explore the unique properties of zero-field flat bands on spherical substrates, offering a promising route for studying interaction-driven states in spherical geometry without external fields. |
|---|---|
| ISSN: | 2399-3650 |