Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals

Using the technique of canonical expansion in probability theory, a bilinear summation formula is derived for the special case of the Meixner-Pollaczek polynomials {λn(k)(x)} which are defined by the generating function ∑n=0∞λn(k)(x)zn/n!=(1+z)12(x−k)/(1−z)12(x+k),   |z|<1.

Saved in:
Bibliographic Details
Main Author: P. A. Lee
Format: Article
Language:English
Published: Wiley 1980-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171280000555
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849470178353479680
author P. A. Lee
author_facet P. A. Lee
author_sort P. A. Lee
collection DOAJ
description Using the technique of canonical expansion in probability theory, a bilinear summation formula is derived for the special case of the Meixner-Pollaczek polynomials {λn(k)(x)} which are defined by the generating function ∑n=0∞λn(k)(x)zn/n!=(1+z)12(x−k)/(1−z)12(x+k),   |z|<1.
format Article
id doaj-art-dc9685a731564e97ada0eb828c47fa90
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 1980-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-dc9685a731564e97ada0eb828c47fa902025-08-20T03:25:14ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251980-01-013476177110.1155/S0161171280000555Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominalsP. A. Lee0Department of Mathematics, University of Malaya, Kuala Lumpur 22-11, MalaysiaUsing the technique of canonical expansion in probability theory, a bilinear summation formula is derived for the special case of the Meixner-Pollaczek polynomials {λn(k)(x)} which are defined by the generating function ∑n=0∞λn(k)(x)zn/n!=(1+z)12(x−k)/(1−z)12(x+k),   |z|<1.http://dx.doi.org/10.1155/S0161171280000555Meixner-Pollaczek polynomialsorthogonal polynomialsbilinear summation formulabivariate distributioncanonical expansionRunge identityG-functions.
spellingShingle P. A. Lee
Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals
International Journal of Mathematics and Mathematical Sciences
Meixner-Pollaczek polynomials
orthogonal polynomials
bilinear summation formula
bivariate distribution
canonical expansion
Runge identity
G-functions.
title Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals
title_full Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals
title_fullStr Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals
title_full_unstemmed Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals
title_short Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals
title_sort probabilistic derivation of a bilinear summation formula for the meixner pollaczek polynominals
topic Meixner-Pollaczek polynomials
orthogonal polynomials
bilinear summation formula
bivariate distribution
canonical expansion
Runge identity
G-functions.
url http://dx.doi.org/10.1155/S0161171280000555
work_keys_str_mv AT palee probabilisticderivationofabilinearsummationformulaforthemeixnerpollaczekpolynominals