U-Turn Diffusion
We investigate diffusion models generating synthetic samples from the probability distribution represented by the ground truth (GT) samples. We focus on how GT sample information is encoded in the score function (SF), computed (not simulated) from the Wiener–Ito linear forward process in the artific...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Entropy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1099-4300/27/4/343 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850183228481077248 |
|---|---|
| author | Hamidreza Behjoo Michael Chertkov |
| author_facet | Hamidreza Behjoo Michael Chertkov |
| author_sort | Hamidreza Behjoo |
| collection | DOAJ |
| description | We investigate diffusion models generating synthetic samples from the probability distribution represented by the ground truth (GT) samples. We focus on how GT sample information is encoded in the score function (SF), computed (not simulated) from the Wiener–Ito linear forward process in the artificial time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>→</mo><mo>∞</mo><mo>]</mo></mrow></semantics></math></inline-formula>, and then used as a nonlinear drift in the simulated Wiener–Ito reverse process with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mo>∞</mo><mo>→</mo><mn>0</mn><mo>]</mo></mrow></semantics></math></inline-formula>. We propose U-Turn diffusion, an augmentation of a pre-trained diffusion model, which shortens the forward and reverse processes to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>→</mo><msub><mi>T</mi><mi>u</mi></msub><mo>]</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><msub><mi>T</mi><mi>u</mi></msub><mo>→</mo><mn>0</mn><mo>]</mo></mrow></semantics></math></inline-formula>. The U-Turn reverse process is initialized at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>u</mi></msub></semantics></math></inline-formula> with a sample from the probability distribution of the forward process (initialized at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> with a GT sample) ensuring a detailed balance relation between the shortened forward and reverse processes. Our experiments on the class-conditioned SF of the ImageNet dataset and the multi-class, single SF of the CIFAR-10 dataset reveal a critical Memorization Time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula>, beyond which generated samples diverge from the GT sample used to initialize the U-Turn scheme, and a Speciation Time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>s</mi></msub></semantics></math></inline-formula>, where for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>u</mi></msub><mo>></mo><msub><mi>T</mi><mi>s</mi></msub><mo>></mo><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula>, samples begin representing different classes. We further examine the role of SF nonlinearity through a Gaussian Test, comparing empirical and Gaussian-approximated U-Turn auto-correlation functions and showing that the SF becomes effectively affine for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>></mo><msub><mi>T</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> and approximately affine for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><msub><mi>T</mi><mi>m</mi></msub><mo>,</mo><msub><mi>T</mi><mi>s</mi></msub><mo>]</mo></mrow></semantics></math></inline-formula>. |
| format | Article |
| id | doaj-art-dc858cf6242d4e8f9a8fec2ee59ea8da |
| institution | OA Journals |
| issn | 1099-4300 |
| language | English |
| publishDate | 2025-03-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Entropy |
| spelling | doaj-art-dc858cf6242d4e8f9a8fec2ee59ea8da2025-08-20T02:17:25ZengMDPI AGEntropy1099-43002025-03-0127434310.3390/e27040343U-Turn DiffusionHamidreza Behjoo0Michael Chertkov1Program in Applied Mathematics, Department of Mathematics, University of Arizona, Tucson, AZ 85721, USAProgram in Applied Mathematics, Department of Mathematics, University of Arizona, Tucson, AZ 85721, USAWe investigate diffusion models generating synthetic samples from the probability distribution represented by the ground truth (GT) samples. We focus on how GT sample information is encoded in the score function (SF), computed (not simulated) from the Wiener–Ito linear forward process in the artificial time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>→</mo><mo>∞</mo><mo>]</mo></mrow></semantics></math></inline-formula>, and then used as a nonlinear drift in the simulated Wiener–Ito reverse process with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mo>∞</mo><mo>→</mo><mn>0</mn><mo>]</mo></mrow></semantics></math></inline-formula>. We propose U-Turn diffusion, an augmentation of a pre-trained diffusion model, which shortens the forward and reverse processes to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>→</mo><msub><mi>T</mi><mi>u</mi></msub><mo>]</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><msub><mi>T</mi><mi>u</mi></msub><mo>→</mo><mn>0</mn><mo>]</mo></mrow></semantics></math></inline-formula>. The U-Turn reverse process is initialized at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>u</mi></msub></semantics></math></inline-formula> with a sample from the probability distribution of the forward process (initialized at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> with a GT sample) ensuring a detailed balance relation between the shortened forward and reverse processes. Our experiments on the class-conditioned SF of the ImageNet dataset and the multi-class, single SF of the CIFAR-10 dataset reveal a critical Memorization Time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>m</mi></msub></semantics></math></inline-formula>, beyond which generated samples diverge from the GT sample used to initialize the U-Turn scheme, and a Speciation Time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>T</mi><mi>s</mi></msub></semantics></math></inline-formula>, where for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>u</mi></msub><mo>></mo><msub><mi>T</mi><mi>s</mi></msub><mo>></mo><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula>, samples begin representing different classes. We further examine the role of SF nonlinearity through a Gaussian Test, comparing empirical and Gaussian-approximated U-Turn auto-correlation functions and showing that the SF becomes effectively affine for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>></mo><msub><mi>T</mi><mi>s</mi></msub></mrow></semantics></math></inline-formula> and approximately affine for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><msub><mi>T</mi><mi>m</mi></msub><mo>,</mo><msub><mi>T</mi><mi>s</mi></msub><mo>]</mo></mrow></semantics></math></inline-formula>.https://www.mdpi.com/1099-4300/27/4/343generative modelsdiffusionstatistical physics |
| spellingShingle | Hamidreza Behjoo Michael Chertkov U-Turn Diffusion Entropy generative models diffusion statistical physics |
| title | U-Turn Diffusion |
| title_full | U-Turn Diffusion |
| title_fullStr | U-Turn Diffusion |
| title_full_unstemmed | U-Turn Diffusion |
| title_short | U-Turn Diffusion |
| title_sort | u turn diffusion |
| topic | generative models diffusion statistical physics |
| url | https://www.mdpi.com/1099-4300/27/4/343 |
| work_keys_str_mv | AT hamidrezabehjoo uturndiffusion AT michaelchertkov uturndiffusion |