Cellular rejuvenation protects neurons from inflammation-mediated cell death

Summary: In multiple sclerosis (MS), inflammation of the central nervous system results in demyelination, neuroaxonal injury, and cell death. However, the molecular signals responsible for injury and cell death in neurons are not fully characterized. Here, we profile the transcriptome of retinal gan...

Full description

Saved in:
Bibliographic Details
Main Authors: Sienna S. Drake, Abdulshakour Mohammadnia, Aliyah Zaman, Christine Gianfelice, Kali Heale, Adam M.R. Groh, Elizabeth M.-L. Hua, Matthew A. Hintermayer, Yuancheng Ryan Lu, David Gosselin, Stephanie Zandee, Alexandre Prat, Jo Anne Stratton, David A. Sinclair, Alyson E. Fournier
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124725000695
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary: In multiple sclerosis (MS), inflammation of the central nervous system results in demyelination, neuroaxonal injury, and cell death. However, the molecular signals responsible for injury and cell death in neurons are not fully characterized. Here, we profile the transcriptome of retinal ganglion cells (RGCs) in experimental autoimmune encephalomyelitis (EAE) mice. Pathway analysis identifies a transcriptional signature reminiscent of aged RGCs with some senescent features, with a comparable signature present in neurons from patients with MS. This is supported by immunostaining demonstrating alterations to the nuclear envelope, modifications in chromatin marks, and accumulation of DNA damage. Transduction of RGCs with an Oct4-Sox2-Klf4 adeno-associated virus (AAV) to rejuvenate the transcriptome enhances RGC survival in EAE and improves visual acuity. Collectively, these data reveal an aging-like phenotype in neurons under pathological neuroinflammation and support the possibility that rejuvenation therapies or senotherapeutic agents could offer a direct avenue for neuroprotection in neuroimmune disorders.
ISSN:2211-1247