Quasi-definiteness of generalized Uvarov transforms of moment functionals

When σ is a quasi-definite moment functional with the monic orthogonal polynomial system {P n (x)}n=0∞, we consider a point masses perturbation τ of σ given by τ:=σ+λΣl=1 mΣk=0 ml((−1)kulk/k!)δ (k)(x − c l), where λ,ulk, and cl are constants with ci≠cj for i≠j. That is, τ is a generalized Uvarov tr...

Full description

Saved in:
Bibliographic Details
Main Authors: D. H. Kim, K. H. Kwon
Format: Article
Language:English
Published: Wiley 2001-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/S1110757X01000225
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832564856034689024
author D. H. Kim
K. H. Kwon
author_facet D. H. Kim
K. H. Kwon
author_sort D. H. Kim
collection DOAJ
description When σ is a quasi-definite moment functional with the monic orthogonal polynomial system {P n (x)}n=0∞, we consider a point masses perturbation τ of σ given by τ:=σ+λΣl=1 mΣk=0 ml((−1)kulk/k!)δ (k)(x − c l), where λ,ulk, and cl are constants with ci≠cj for i≠j. That is, τ is a generalized Uvarov transform of σ satisfying A(x) τ=A(x) σ, where A(x)=∏l=1m(x−cl)ml+1. We find necessary and sufficient conditions for τ to be quasi-definite. We also discuss various properties of monic orthogonal polynomial system {Rn (x)}n=0∞ relative to τ including two examples.
format Article
id doaj-art-dc524ffcb2df4db29c6f7ea16689e7ce
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2001-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-dc524ffcb2df4db29c6f7ea16689e7ce2025-02-03T01:10:04ZengWileyJournal of Applied Mathematics1110-757X1687-00422001-01-0112699010.1155/S1110757X01000225Quasi-definiteness of generalized Uvarov transforms of moment functionalsD. H. Kim0K. H. Kwon1Division of Applied Mathematics, Korea Advanced Institute of Science and Technology, Taejon 305-701, KoreaDivision of Applied Mathematics, Korea Advanced Institute of Science and Technology, Taejon 305-701, KoreaWhen σ is a quasi-definite moment functional with the monic orthogonal polynomial system {P n (x)}n=0∞, we consider a point masses perturbation τ of σ given by τ:=σ+λΣl=1 mΣk=0 ml((−1)kulk/k!)δ (k)(x − c l), where λ,ulk, and cl are constants with ci≠cj for i≠j. That is, τ is a generalized Uvarov transform of σ satisfying A(x) τ=A(x) σ, where A(x)=∏l=1m(x−cl)ml+1. We find necessary and sufficient conditions for τ to be quasi-definite. We also discuss various properties of monic orthogonal polynomial system {Rn (x)}n=0∞ relative to τ including two examples.http://dx.doi.org/10.1155/S1110757X01000225
spellingShingle D. H. Kim
K. H. Kwon
Quasi-definiteness of generalized Uvarov transforms of moment functionals
Journal of Applied Mathematics
title Quasi-definiteness of generalized Uvarov transforms of moment functionals
title_full Quasi-definiteness of generalized Uvarov transforms of moment functionals
title_fullStr Quasi-definiteness of generalized Uvarov transforms of moment functionals
title_full_unstemmed Quasi-definiteness of generalized Uvarov transforms of moment functionals
title_short Quasi-definiteness of generalized Uvarov transforms of moment functionals
title_sort quasi definiteness of generalized uvarov transforms of moment functionals
url http://dx.doi.org/10.1155/S1110757X01000225
work_keys_str_mv AT dhkim quasidefinitenessofgeneralizeduvarovtransformsofmomentfunctionals
AT khkwon quasidefinitenessofgeneralizeduvarovtransformsofmomentfunctionals