Progressive Alcohol-Related Brain Atrophy and White Matter Pathology Are Linked to Long-Term Inhibitory Effects on mTOR Signaling

Background: Alcohol-related brain damage (ARBD) causes cognitive-behavioral impairments that can lead to dementia. White matter is a major target in ARBD. Additional research is needed to better understand the mechanisms of ARBD progression to advanced stages with permanent disability. Potential con...

Full description

Saved in:
Bibliographic Details
Main Authors: Ming Tong, Camilla Homans, William Pelit, Busra Delikkaya, Suzanne M. de la Monte
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/15/3/413
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Alcohol-related brain damage (ARBD) causes cognitive-behavioral impairments that can lead to dementia. White matter is a major target in ARBD. Additional research is needed to better understand the mechanisms of ARBD progression to advanced stages with permanent disability. Potential contributing factors include neuroinflammation and altered signaling through pathways that regulate cell survival, neuronal plasticity, myelin maintenance, and energy metabolism. Objectives: This study characterizes the time course-related effects of chronic heavy ethanol feeding on white matter myelin protein expression, neuroinflammation, and molecules that mediate signaling through the mechanistic target of rapamycin (mTOR) pathways. Methods: Adult Long Evans rats (8–12/group) were fed with isocaloric liquid diets containing 0% (control) or 36% ethanol. Experimental endpoints spanned from 1 day to 8 weeks. The frontal lobes were used for histopathology and molecular and biochemical analyses. Results: Chronic ethanol feeding caused significant brain atrophy that was detected within 4 weeks and sustained over the course of the study. Early exposure time points, i.e., 2 weeks or less, were associated with global increases in the expression of non-myelinating, myelinating, and astrocyte markers, whereas at 6 or 8 weeks, white matter oligodendrocyte/myelin/glial protein expression was reduced. These effects were not associated with shifts in neuroinflammatory markers. Instead, the early stages of ARBD were accompanied by increases in several mTOR proteins and phosphoproteins, while later phases were marked by inhibition of downstream mTOR signaling through P70S6K. Conclusions: Short-term versus long-term ethanol exposures differentially altered white matter glial protein expression and signaling through mTOR’s downstream mediators that have known roles in myelin maintenance. These findings suggest that strategic targeting of mTOR signaling dysregulation may be critical for maintaining the functional integrity of white matter and ultimately preventing long-term ARBD-related cognitive impairment.
ISSN:2218-273X