Reliable ECG Anomaly Detection on Edge Devices for Internet of Medical Things Applications
The advent of Tiny Machine Learning (TinyML) has unlocked the potential to deploy machine learning models on resource-constrained edge devices, revolutionizing real-time monitoring in Internet of Medical Things (IoMT) applications. This study introduces a novel approach to real-time electrocardiogra...
Saved in:
| Main Authors: | Moez Hizem, Leila Bousbia, Yassmine Ben Dhiab, Mohamed Ould-Elhassen Aoueileyine, Ridha Bouallegue |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/8/2496 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Optimising TinyML with quantization and distillation of transformer and mamba models for indoor localisation on edge devices
by: Thanaphon Suwannaphong, et al.
Published: (2025-03-01) -
Tiny Machine Learning and On-Device Inference: A Survey of Applications, Challenges, and Future Directions
by: Soroush Heydari, et al.
Published: (2025-05-01) -
Efficient Detection of Microplastics on Edge Devices With Tailored Compiler for TinyML Applications
by: Alessandro Cerioli, et al.
Published: (2025-01-01) -
Engineering a multi model fallback system for edge devices
by: Gaurav Kadve, et al.
Published: (2025-06-01) -
Microcontroller-Based EdgeML: Health Monitoring for Stress and Sleep via HRV
by: Priyanshu Srivastava, et al.
Published: (2024-12-01)