Effect of the Precipitating Agent on the Synthesis and Sintering Behavior of 20 mol% Sm-Doped Ceria

Nanocrystalline 20 mol% samaria-doped ceria powders (Ce0.8Sm0.2O1.9) were synthesized by coprecipitation techniques using various precipitating agents in aqueous solution: ammonia, ammonium carbonate, tetramethylammonium hydroxide, and urea. The synthesized powders after calcination at 600°C possess...

Full description

Saved in:
Bibliographic Details
Main Authors: Luca Spiridigliozzi, Gianfranco Dell’Agli, Mattia Biesuz, Vincenzo M. Sglavo, Michele Pansini
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2016/6096123
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanocrystalline 20 mol% samaria-doped ceria powders (Ce0.8Sm0.2O1.9) were synthesized by coprecipitation techniques using various precipitating agents in aqueous solution: ammonia, ammonium carbonate, tetramethylammonium hydroxide, and urea. The synthesized powders after calcination at 600°C possess a fluorite structure with nanometric size although they are characterized by a very different morphology and degree of agglomeration. Remarkable differences appear in the sintering behavior, especially because of the presence of hard agglomerates. The precipitating agent has therefore a crucial role in the coprecipitation process, which influences the morphology of the powders and in turn the sintering behavior. The obtained results clearly reveal that ammonium carbonate and urea are the best precipitating agents to obtain final dense products after sintering.
ISSN:1687-8434
1687-8442