Development of a Method for Enhanced Fan Representation in Gas Turbine Modeling

A challenge in civil aviation future propulsion systems is expected to be the integration with the airframe, coming as a result of increasing bypass ratio or above wing installations for noise mitigation. The resulting highly distorted inlet flows to the engine make a clear demand for advanced gas t...

Full description

Saved in:
Bibliographic Details
Main Authors: Georgios Doulgeris, Hossein Khaleghi, Anestis Kalfas, Pericles Pilidis
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:International Journal of Rotating Machinery
Online Access:http://dx.doi.org/10.1155/2011/182906
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A challenge in civil aviation future propulsion systems is expected to be the integration with the airframe, coming as a result of increasing bypass ratio or above wing installations for noise mitigation. The resulting highly distorted inlet flows to the engine make a clear demand for advanced gas turbine performance prediction models. Since the dawn of jet engine, several models have been proposed, and the present work comes to add a model that combines two well-established compressor performance methods in order to create a quasi-three-dimensional representation of the fan of a modern turbofan. A streamline curvature model is coupled to a parallel compressor method, covering radial and circumferential directions, respectively. Model testing has shown a close agreement to experimental data, making it a good candidate for assessing the loss of surge margin on a high bypass ratio turbofan, semiembedded on the upper surface of a broad wing airframe.
ISSN:1023-621X
1542-3034