Optimization of Interplanetary Trajectories Using the Colliding Bodies Optimization Algorithm

In this paper, a recent physics-based metaheuristic algorithm, the Colliding Bodies Optimization (CBO), already employed to solve problems in civil and mechanical engineering, is proposed for the optimization of interplanetary trajectories by using both indirect and direct approaches. The CBO has an...

Full description

Saved in:
Bibliographic Details
Main Authors: Marco Del Monte, Raffaele Meles, Christian Circi
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2020/9437378
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a recent physics-based metaheuristic algorithm, the Colliding Bodies Optimization (CBO), already employed to solve problems in civil and mechanical engineering, is proposed for the optimization of interplanetary trajectories by using both indirect and direct approaches. The CBO has an extremely simple formulation and does not depend on any initial conditions. To test the performances of the algorithm, missions with remarkably different orbital transfer energies are considered: from the simple planar case, as the Earth-Mars orbital transfer, to more energetic ones, like a rendezvous with the asteroid Pallas.
ISSN:1687-5966
1687-5974