A New Biased Estimation Class to Combat the Multicollinearity in Regression Models: Modified Two--Parameter Liu Estimator

The multicollinearity problem occurrence of the explanatory variables affects the least-squares (LS) estimator seriously in the regression models. The multicollinearity adverse effects on the LS estimation are also investigated by many authors. Instead of the LS estimator, we propose a new modified...

Full description

Saved in:
Bibliographic Details
Main Author: Mohamed Reda Abonazel
Format: Article
Language:English
Published: The Scientific Association for Studies and Applied Research 2025-04-01
Series:Computational Journal of Mathematical and Statistical Sciences
Subjects:
Online Access:https://cjmss.journals.ekb.eg/article_414201.html
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850092866819325952
author Mohamed Reda Abonazel
author_facet Mohamed Reda Abonazel
author_sort Mohamed Reda Abonazel
collection DOAJ
description The multicollinearity problem occurrence of the explanatory variables affects the least-squares (LS) estimator seriously in the regression models. The multicollinearity adverse effects on the LS estimation are also investigated by many authors. Instead of the LS estimator, we propose a new modified two–parameter Liu (MTPL) estimator to handle the multicollinearity for the regression model based on two shrinkage parameters (k, d). Also, we give the necessary and sufficient conditions for the outperforming of the proposed MTPL estimator over the LS, ridge, Liu, Kibria-Lukman (KL), modified ridge type (MRT), and modified one–parameter Liu (MOPL) estimators by the scalar mean squared error (MSE) criterion. Optimal biasing parameters of the proposed MTPL estimator are derived. Simulation and real data are used to study the efficiency of the MTPL estimator. The results of the simulation study and two real-life applications show the superiority of the proposed estimator because the MSE of the proposed estimator is smaller than the other estimators.
format Article
id doaj-art-dbe2bdc815d44b29a542de59b05eff51
institution DOAJ
issn 2974-3435
2974-3443
language English
publishDate 2025-04-01
publisher The Scientific Association for Studies and Applied Research
record_format Article
series Computational Journal of Mathematical and Statistical Sciences
spelling doaj-art-dbe2bdc815d44b29a542de59b05eff512025-08-20T02:42:01ZengThe Scientific Association for Studies and Applied ResearchComputational Journal of Mathematical and Statistical Sciences2974-34352974-34432025-04-014131634710.21608/CJMSS.2025.347818.1096A New Biased Estimation Class to Combat the Multicollinearity in Regression Models: Modified Two--Parameter Liu EstimatorMohamed Reda Abonazel0Department of applied statistics and Econometrics, Faculty of Graduate Studies for Statistical Research, Cairo Uniersity, Giza 12613, EgyptThe multicollinearity problem occurrence of the explanatory variables affects the least-squares (LS) estimator seriously in the regression models. The multicollinearity adverse effects on the LS estimation are also investigated by many authors. Instead of the LS estimator, we propose a new modified two–parameter Liu (MTPL) estimator to handle the multicollinearity for the regression model based on two shrinkage parameters (k, d). Also, we give the necessary and sufficient conditions for the outperforming of the proposed MTPL estimator over the LS, ridge, Liu, Kibria-Lukman (KL), modified ridge type (MRT), and modified one–parameter Liu (MOPL) estimators by the scalar mean squared error (MSE) criterion. Optimal biasing parameters of the proposed MTPL estimator are derived. Simulation and real data are used to study the efficiency of the MTPL estimator. The results of the simulation study and two real-life applications show the superiority of the proposed estimator because the MSE of the proposed estimator is smaller than the other estimators.https://cjmss.journals.ekb.eg/article_414201.htmlcompany efficiencykibria-lukman estimatorliu estimatormodified ridge type estimatormonte carlo simulation
spellingShingle Mohamed Reda Abonazel
A New Biased Estimation Class to Combat the Multicollinearity in Regression Models: Modified Two--Parameter Liu Estimator
Computational Journal of Mathematical and Statistical Sciences
company efficiency
kibria-lukman estimator
liu estimator
modified ridge type estimator
monte carlo simulation
title A New Biased Estimation Class to Combat the Multicollinearity in Regression Models: Modified Two--Parameter Liu Estimator
title_full A New Biased Estimation Class to Combat the Multicollinearity in Regression Models: Modified Two--Parameter Liu Estimator
title_fullStr A New Biased Estimation Class to Combat the Multicollinearity in Regression Models: Modified Two--Parameter Liu Estimator
title_full_unstemmed A New Biased Estimation Class to Combat the Multicollinearity in Regression Models: Modified Two--Parameter Liu Estimator
title_short A New Biased Estimation Class to Combat the Multicollinearity in Regression Models: Modified Two--Parameter Liu Estimator
title_sort new biased estimation class to combat the multicollinearity in regression models modified two parameter liu estimator
topic company efficiency
kibria-lukman estimator
liu estimator
modified ridge type estimator
monte carlo simulation
url https://cjmss.journals.ekb.eg/article_414201.html
work_keys_str_mv AT mohamedredaabonazel anewbiasedestimationclasstocombatthemulticollinearityinregressionmodelsmodifiedtwoparameterliuestimator
AT mohamedredaabonazel newbiasedestimationclasstocombatthemulticollinearityinregressionmodelsmodifiedtwoparameterliuestimator