Simulating the Effects of Aerosol‐Radiation Interactions on Subseasonal Prediction Using the Coupled Unified Forecast System and CCPP‐Chem: Interactive Aerosol Module Versus Prescribed Aerosol Climatology

Abstract This study investigates the effects of aerosol‐radiation interactions on subseasonal prediction using the Unified Forecast System, which includes atmosphere, ocean, sea ice, and wave components, coupled with an aerosol module. The aerosol module is from the current NOAA operational GEFSv12‐...

Full description

Saved in:
Bibliographic Details
Main Authors: S. Sun, G. A. Grell, L. Zhang, J. K. Henderson, S. Wang, D. Heinzeller, H. Li, J. Meixner, P. S. Bhattacharjee
Format: Article
Language:English
Published: American Geophysical Union (AGU) 2025-07-01
Series:Journal of Advances in Modeling Earth Systems
Subjects:
Online Access:https://doi.org/10.1029/2024MS004392
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849729138354552832
author S. Sun
G. A. Grell
L. Zhang
J. K. Henderson
S. Wang
D. Heinzeller
H. Li
J. Meixner
P. S. Bhattacharjee
author_facet S. Sun
G. A. Grell
L. Zhang
J. K. Henderson
S. Wang
D. Heinzeller
H. Li
J. Meixner
P. S. Bhattacharjee
author_sort S. Sun
collection DOAJ
description Abstract This study investigates the effects of aerosol‐radiation interactions on subseasonal prediction using the Unified Forecast System, which includes atmosphere, ocean, sea ice, and wave components, coupled with an aerosol module. The aerosol module is from the current NOAA operational GEFSv12‐Aerosols model, which is based on the WRF‐Chem GOCART with updates to the dust scheme and the biomass burning plume rise module. It simulates five aerosol species: sulfate, dust, black carbon, organic carbon, and sea salt. The modeled aerosol optical depth (AOD) is compared to MERRA‐2 reanalysis, MODIS satellite retrievals, and ATom aircraft measurements. Despite biases primarily in dust and sea salt, the AOD shows good agreement globally. The simulated radiative forcing (RF) at the top of the atmosphere (TOA) from the total aerosols is approximately −2.6 W/m2 or −16 W/m2 per unit AOD globally. In subsequent simulations, the prognostic aerosol module is replaced with climatological aerosol concentrations derived from the preceding experiments. While regional differences in RF at TOA between these two experiments are noticeable in specific events, the multi‐year subseasonal simulations reveal consistent patterns in RF at TOA, surface temperature, geopotential height at 500 hPa, and precipitation. These results suggest that given the current capacities of aerosol modeling, adopting a climatology of aerosol concentrations as a cost‐effective alternative to a complex aerosol module may be a practical approach for subseasonal applications.
format Article
id doaj-art-dbbc45920f9240b2a257f355b44c8447
institution DOAJ
issn 1942-2466
language English
publishDate 2025-07-01
publisher American Geophysical Union (AGU)
record_format Article
series Journal of Advances in Modeling Earth Systems
spelling doaj-art-dbbc45920f9240b2a257f355b44c84472025-08-20T03:09:19ZengAmerican Geophysical Union (AGU)Journal of Advances in Modeling Earth Systems1942-24662025-07-01177n/an/a10.1029/2024MS004392Simulating the Effects of Aerosol‐Radiation Interactions on Subseasonal Prediction Using the Coupled Unified Forecast System and CCPP‐Chem: Interactive Aerosol Module Versus Prescribed Aerosol ClimatologyS. Sun0G. A. Grell1L. Zhang2J. K. Henderson3S. Wang4D. Heinzeller5H. Li6J. Meixner7P. S. Bhattacharjee8NOAA Global Systems Laboratory Boulder CO USANOAA Global Systems Laboratory Boulder CO USANOAA Global Systems Laboratory Boulder CO USANOAA Global Systems Laboratory Boulder CO USACooperative Institute for Research in Environmental Sciences University of Colorado at Boulder Boulder CO USANOAA Global Systems Laboratory Boulder CO USANOAA Global Systems Laboratory Boulder CO USANOAA NCEP Environmental Modeling Center (EMC) College Park MD USASAIC at NCEP EMC College Park MD USAAbstract This study investigates the effects of aerosol‐radiation interactions on subseasonal prediction using the Unified Forecast System, which includes atmosphere, ocean, sea ice, and wave components, coupled with an aerosol module. The aerosol module is from the current NOAA operational GEFSv12‐Aerosols model, which is based on the WRF‐Chem GOCART with updates to the dust scheme and the biomass burning plume rise module. It simulates five aerosol species: sulfate, dust, black carbon, organic carbon, and sea salt. The modeled aerosol optical depth (AOD) is compared to MERRA‐2 reanalysis, MODIS satellite retrievals, and ATom aircraft measurements. Despite biases primarily in dust and sea salt, the AOD shows good agreement globally. The simulated radiative forcing (RF) at the top of the atmosphere (TOA) from the total aerosols is approximately −2.6 W/m2 or −16 W/m2 per unit AOD globally. In subsequent simulations, the prognostic aerosol module is replaced with climatological aerosol concentrations derived from the preceding experiments. While regional differences in RF at TOA between these two experiments are noticeable in specific events, the multi‐year subseasonal simulations reveal consistent patterns in RF at TOA, surface temperature, geopotential height at 500 hPa, and precipitation. These results suggest that given the current capacities of aerosol modeling, adopting a climatology of aerosol concentrations as a cost‐effective alternative to a complex aerosol module may be a practical approach for subseasonal applications.https://doi.org/10.1029/2024MS004392aerosol radiation interactionssubseasonal predictionaerosol modeling
spellingShingle S. Sun
G. A. Grell
L. Zhang
J. K. Henderson
S. Wang
D. Heinzeller
H. Li
J. Meixner
P. S. Bhattacharjee
Simulating the Effects of Aerosol‐Radiation Interactions on Subseasonal Prediction Using the Coupled Unified Forecast System and CCPP‐Chem: Interactive Aerosol Module Versus Prescribed Aerosol Climatology
Journal of Advances in Modeling Earth Systems
aerosol radiation interactions
subseasonal prediction
aerosol modeling
title Simulating the Effects of Aerosol‐Radiation Interactions on Subseasonal Prediction Using the Coupled Unified Forecast System and CCPP‐Chem: Interactive Aerosol Module Versus Prescribed Aerosol Climatology
title_full Simulating the Effects of Aerosol‐Radiation Interactions on Subseasonal Prediction Using the Coupled Unified Forecast System and CCPP‐Chem: Interactive Aerosol Module Versus Prescribed Aerosol Climatology
title_fullStr Simulating the Effects of Aerosol‐Radiation Interactions on Subseasonal Prediction Using the Coupled Unified Forecast System and CCPP‐Chem: Interactive Aerosol Module Versus Prescribed Aerosol Climatology
title_full_unstemmed Simulating the Effects of Aerosol‐Radiation Interactions on Subseasonal Prediction Using the Coupled Unified Forecast System and CCPP‐Chem: Interactive Aerosol Module Versus Prescribed Aerosol Climatology
title_short Simulating the Effects of Aerosol‐Radiation Interactions on Subseasonal Prediction Using the Coupled Unified Forecast System and CCPP‐Chem: Interactive Aerosol Module Versus Prescribed Aerosol Climatology
title_sort simulating the effects of aerosol radiation interactions on subseasonal prediction using the coupled unified forecast system and ccpp chem interactive aerosol module versus prescribed aerosol climatology
topic aerosol radiation interactions
subseasonal prediction
aerosol modeling
url https://doi.org/10.1029/2024MS004392
work_keys_str_mv AT ssun simulatingtheeffectsofaerosolradiationinteractionsonsubseasonalpredictionusingthecoupledunifiedforecastsystemandccppcheminteractiveaerosolmoduleversusprescribedaerosolclimatology
AT gagrell simulatingtheeffectsofaerosolradiationinteractionsonsubseasonalpredictionusingthecoupledunifiedforecastsystemandccppcheminteractiveaerosolmoduleversusprescribedaerosolclimatology
AT lzhang simulatingtheeffectsofaerosolradiationinteractionsonsubseasonalpredictionusingthecoupledunifiedforecastsystemandccppcheminteractiveaerosolmoduleversusprescribedaerosolclimatology
AT jkhenderson simulatingtheeffectsofaerosolradiationinteractionsonsubseasonalpredictionusingthecoupledunifiedforecastsystemandccppcheminteractiveaerosolmoduleversusprescribedaerosolclimatology
AT swang simulatingtheeffectsofaerosolradiationinteractionsonsubseasonalpredictionusingthecoupledunifiedforecastsystemandccppcheminteractiveaerosolmoduleversusprescribedaerosolclimatology
AT dheinzeller simulatingtheeffectsofaerosolradiationinteractionsonsubseasonalpredictionusingthecoupledunifiedforecastsystemandccppcheminteractiveaerosolmoduleversusprescribedaerosolclimatology
AT hli simulatingtheeffectsofaerosolradiationinteractionsonsubseasonalpredictionusingthecoupledunifiedforecastsystemandccppcheminteractiveaerosolmoduleversusprescribedaerosolclimatology
AT jmeixner simulatingtheeffectsofaerosolradiationinteractionsonsubseasonalpredictionusingthecoupledunifiedforecastsystemandccppcheminteractiveaerosolmoduleversusprescribedaerosolclimatology
AT psbhattacharjee simulatingtheeffectsofaerosolradiationinteractionsonsubseasonalpredictionusingthecoupledunifiedforecastsystemandccppcheminteractiveaerosolmoduleversusprescribedaerosolclimatology