Identifying errors in dust models from data assimilation

Abstract Airborne mineral dust is an important component of the Earth system and is increasingly predicted prognostically in weather and climate models. The recent development of data assimilation for remotely sensed aerosol optical depths (AODs) into models offers a new opportunity to better unders...

Full description

Saved in:
Bibliographic Details
Main Authors: R. J. Pope, J. H. Marsham, P. Knippertz, M. E. Brooks, A. J. Roberts
Format: Article
Language:English
Published: Wiley 2016-09-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1002/2016GL070621
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Airborne mineral dust is an important component of the Earth system and is increasingly predicted prognostically in weather and climate models. The recent development of data assimilation for remotely sensed aerosol optical depths (AODs) into models offers a new opportunity to better understand the characteristics and sources of model error. Here we examine assimilation increments from Moderate Resolution Imaging Spectroradiometer AODs over northern Africa in the Met Office global forecast model. The model underpredicts (overpredicts) dust in light (strong) winds, consistent with (submesoscale) mesoscale processes lifting dust in reality but being missed by the model. Dust is overpredicted in the Sahara and underpredicted in the Sahel. Using observations of lighting and rain, we show that haboobs (cold pool outflows from moist convection) are an important dust source in reality but are badly handled by the model's convection scheme. The approach shows promise to serve as a useful framework for future model development.
ISSN:0094-8276
1944-8007