Docosahexaenoic Acid Inhibits Osteoclastogenesis via FFAR4-Mediated Regulation of Inflammatory Cytokines

Osteoclastogenesis—the activation and differentiation of osteoclasts—is one of the pivotal processes of bone remodeling and is regulated by RANKL/RANK signaling, the decoy function of osteoprotegerin (OPG), and a cascade of pro- and anti-inflammatory cytokines. The disruption of this balance leads t...

Full description

Saved in:
Bibliographic Details
Main Authors: Jinghan Ma, Hideki Kitaura, Fumitoshi Ohori, Aseel Marahleh, Ziqiu Fan, Angyi Lin, Kohei Narita, Kou Murakami, Hiroyasu Kanetaka
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/30/15/3180
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Osteoclastogenesis—the activation and differentiation of osteoclasts—is one of the pivotal processes of bone remodeling and is regulated by RANKL/RANK signaling, the decoy function of osteoprotegerin (OPG), and a cascade of pro- and anti-inflammatory cytokines. The disruption of this balance leads to pathological bone loss in diseases such as osteoporosis and rheumatoid arthritis. FFAR4 (Free Fatty Acid Receptor 4), a G protein-coupled receptor for long-chain omega-3 fatty acids, has been confirmed as a key mediator of metabolic and anti-inflammatory effects. This review focuses on how FFAR4 acts as the selective receptor for the omega-3 fatty acid docosahexaenoic acid (DHA). It activates two divergent signaling pathways. The Gαq-dependent cascade facilitates intracellular calcium mobilization and ERK1/2 activation. Meanwhile, β-arrestin-2 recruitment inhibits NF-κB. These collective actions reshape the cytokine environment. In macrophages, DHA–FFAR4 signaling lowers the levels of TNF-α, interleukin-6 (IL-6), and IL-1β while increasing IL-10 secretion. Consequently, the activation of NFATc1 and NF-κB p65 is profoundly suppressed under TNF-α or RANKL stimulation. Additionally, DHA modulates the RANKL/OPG axis in osteoblastic cells by suppressing RANKL expression, thereby reducing osteoclast differentiation in an inflammatory mouse model.
ISSN:1420-3049