Adaptive Whole-Brain Dynamics Predictive Method: Relevancy to Mental Disorders

The Hopf whole-brain model, based on structural connectivity, overcomes limitations of traditional structural or functional connectivity-focused methods by incorporating heterogeneity parameters, quantifying dynamic brain characteristics in healthy and diseased states. Traditional parameter fitting...

Full description

Saved in:
Bibliographic Details
Main Authors: Qian-Yun Zhang, Chun-Wang Su, Qiang Luo, Celso Grebogi, Zi-Gang Huang, Junjie Jiang
Format: Article
Language:English
Published: American Association for the Advancement of Science (AAAS) 2025-01-01
Series:Research
Online Access:https://spj.science.org/doi/10.34133/research.0648
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Hopf whole-brain model, based on structural connectivity, overcomes limitations of traditional structural or functional connectivity-focused methods by incorporating heterogeneity parameters, quantifying dynamic brain characteristics in healthy and diseased states. Traditional parameter fitting techniques lack precision, restricting broader use. To address this, we validated parameter fitting methods using simulated networks and synthetic models, introducing improvements such as individual-specific initialization and optimized gradient descent, which reduced individual data loss. We also developed an approximate loss function and gradient adjustment mechanism, enhancing parameter fitting accuracy and stability. Applying this refined method to datasets for major depressive disorder (MDD) and autism spectrum disorder (ASD), we identified differences in brain regions between patients and healthy controls, explaining related anomalies. This rigorous validation is crucial for clinical application, paving the way for precise neuropathological identification and novel treatments in neuropsychiatric research, demonstrating substantial potential in clinical neurology.
ISSN:2639-5274