Computational Study of Cold-Formed-Steel X-Braced Shear Walls

The aim of this paper was to present a verified finite element method that represents the full-scale-braced shear walls under seismic loads and to study their ductility. The models account for different types of material and geometric nonlinearities. The screws that connect the cold-formed-steel (CF...

Full description

Saved in:
Bibliographic Details
Main Authors: Metwally Abu-Hamd, Maheeb Abdel-Ghaffar, Basel El-Samman
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2018/9784360
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this paper was to present a verified finite element method that represents the full-scale-braced shear walls under seismic loads and to study their ductility. The models account for different types of material and geometric nonlinearities. The screws that connect the cold-formed-steel (CFS) studs, tracks, gusset plates, and braces are considered explicitly in the model. The deformation of the hold-downs under the horizontal load is considered. The finite element program ANSYS (2012) is used to model and analyze the case studies. A parametric study is performed to investigate the response modification factor (R) of the CFS-braced shear walls. The parametric study showed that the North American Specification is about 20% conservative in estimating the (R) factor.
ISSN:1687-8086
1687-8094