Simulating optical coherence tomography for observing nerve activity: A finite difference time domain bi-dimensional model.
We present a finite difference time domain (FDTD) model for computation of A line scans in time domain optical coherence tomography (OCT). The OCT output signal is created using two different simulations for the reference and sample arms, with a successive computation of the interference signal with...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2018-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0200392&type=printable |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We present a finite difference time domain (FDTD) model for computation of A line scans in time domain optical coherence tomography (OCT). The OCT output signal is created using two different simulations for the reference and sample arms, with a successive computation of the interference signal with external software. In this paper we present the model applied to two different samples: a glass rod filled with water-sucrose solution at different concentrations and a peripheral nerve. This work aims to understand to what extent time domain OCT can be used for non-invasive, direct optical monitoring of peripheral nerve activity. |
|---|---|
| ISSN: | 1932-6203 |